ON SUMS INVOLVING THE EULER TOTIENT FUNCTION

被引:0
|
作者
Kiuchi, Isao [1 ]
Tsuruta, Yuki [2 ]
机构
[1] Yamaguchi Univ, Fac Sci, Dept Math Sci, Yoshida 1677-1, Yamaguchi 7538512, Japan
[2] Oita Univ, Grad Sch Engn, 700 Dannoharu, Oita 8701192, Japan
关键词
gcd-sum function; Euler totient function; Dirichlet series; divisor function; Lindelof hypothesis; asymptotic results on arithmetical functions; EXPONENTIAL-SUMS;
D O I
10.1017/S0004972723000825
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let gcd(n(1), ... , n(k)) denote the greatest common divisor of positive integers n(1), ... , n(k) and let 0 be the Euler totient function. For any real number x > 3 and any integer k >= 2, we investigate the asymptotic behaviour of Z(n)1...(n)k <= x0(gcd(n(1), ... , n(k))).
引用
收藏
页码:486 / 497
页数:12
相关论文
共 50 条