Compression Theorems and Steiner Ratios on Spheres

被引:0
|
作者
J. H. Rubinstein
J. F. Weng
机构
[1] University of Melbourne,Department of Mathematics
来源
Journal of Combinatorial Optimization | 1997年 / 1卷
关键词
Mathematical Modeling; Industrial Mathematic; Span Tree; Side Length; Discrete Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose AiBiCi (i = 1, 2) are two triangles of equal side lengths lying on spheres Φi with radii r1, r2 (r1 < r2) respectively. First we prove the existence of a map h: A1B1C1 → A2B2C2 so that for any two points P1, Q1 in A1B1C1,¦P1Q1¦≥¦h(P1)h(Q1)¦. Moreover, if P1, Q1 are not on the same side, then the inequality strictly holds. This compression theorem can be applied to compare the minimum of a variable in triangles on two spheres. Hence, one of the applications of the compression theorem is the study of Steiner minimal tress on spheres. The Steiner ratio is the largest lower bound for the ratio of the lengths of Steiner minimal trees to minimal spanning trees for point sets in a metric space. Using the compression theorem we prove that the Steiner ratio on spheres is the same as on the Euclidean plane, namely \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\backslash \bar 3/2$$ \end{document}.
引用
收藏
页码:67 / 78
页数:11
相关论文
共 50 条
  • [41] Various limit theorems for ratios from the uniform distribution
    Miao, Yu
    Sun, Yan
    Wang, Rujun
    Dong, Manru
    OPEN MATHEMATICS, 2016, 14 : 393 - 403
  • [42] THE THEOREMS OF URQUHART AND STEINER-LEHMUS IN THE POINCARE BALL MODEL OF HYPERBOLIC GEOMETRY
    Demirel, Oguzhan
    Seyrantepe, Emine Soyturk
    MATEMATICKI VESNIK, 2011, 63 (04): : 263 - 274
  • [43] Helly theorems for 3-Steiner and 3-monophonic convexity in graphs
    Nielsen, Morten H.
    Oellermann, Ortrud R.
    DISCRETE MATHEMATICS, 2011, 311 (10-11) : 872 - 880
  • [44] Approximate min-max theorems of Steiner rooted-orientations of hypergraphs
    Kiraly, Tamas
    Lau, Lap Chi
    47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 283 - +
  • [45] GRAVITATIONAL COMPRESSION OF CRYSTALLIZED SUSPENSIONS OF POLYSTYRENE SPHERES
    CRANDALL, RS
    WILLIAMS, R
    SCIENCE, 1977, 198 (4314) : 293 - 295
  • [46] The compression of spheres coated with an aqueous ethylcellulose dispersion
    Miller, RA
    Leung, EMK
    Oates, RJ
    DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 1999, 25 (04) : 503 - 511
  • [47] COMPRESSION LOADING OF SOLID SPHERES OF PLASTER OF PARIS
    JOHNSON, W
    MAMALIS, AG
    MIHARA, Y
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1977, 19 (06) : 373 - 377
  • [48] Compression fixed point theorems of operator type
    Avery, Richard I.
    Graef, John R.
    Liu, Xueyan
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2015, 17 (01) : 83 - 97
  • [49] ESTIMATION OF DEFORMATION OF ROUGH SPHERES AND CYLINDERS IN COMPRESSION
    DEMKIN, NB
    IZMAILOV, VV
    KOROTKOV, MA
    WEAR, 1976, 39 (01) : 63 - 82
  • [50] Nonlocal Games, Compression Theorems, and the Arithmetical Hierarchy*
    Mousavi, Hamoon
    Nezhadi, Seyed Sajjad
    Yuen, Henry
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 1 - 11