Compression Theorems and Steiner Ratios on Spheres

被引:0
|
作者
J. H. Rubinstein
J. F. Weng
机构
[1] University of Melbourne,Department of Mathematics
来源
Journal of Combinatorial Optimization | 1997年 / 1卷
关键词
Mathematical Modeling; Industrial Mathematic; Span Tree; Side Length; Discrete Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose AiBiCi (i = 1, 2) are two triangles of equal side lengths lying on spheres Φi with radii r1, r2 (r1 < r2) respectively. First we prove the existence of a map h: A1B1C1 → A2B2C2 so that for any two points P1, Q1 in A1B1C1,¦P1Q1¦≥¦h(P1)h(Q1)¦. Moreover, if P1, Q1 are not on the same side, then the inequality strictly holds. This compression theorem can be applied to compare the minimum of a variable in triangles on two spheres. Hence, one of the applications of the compression theorem is the study of Steiner minimal tress on spheres. The Steiner ratio is the largest lower bound for the ratio of the lengths of Steiner minimal trees to minimal spanning trees for point sets in a metric space. Using the compression theorem we prove that the Steiner ratio on spheres is the same as on the Euclidean plane, namely \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\backslash \bar 3/2$$ \end{document}.
引用
收藏
页码:67 / 78
页数:11
相关论文
共 50 条
  • [21] The theorems of Stewart and Steiner in the Poincare disc model of hyperbolic geometry
    Demirel, Oguzhan
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2009, 50 (03): : 359 - 371
  • [22] Some Theorems on Incremental Compression
    Franz, Arthur
    ARTIFICIAL GENERAL INTELLIGENCE (AGI 2016), 2016, 9782 : 74 - 83
  • [23] Geometric inequalities and rigidity theorems on equatorial spheres
    Huang, Lan-Hsuan
    Wu, Damin
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2017, 25 (01) : 185 - 207
  • [24] Theorems on injectivity of radon transform over spheres
    Volchkov, VV
    DOKLADY AKADEMII NAUK, 1997, 354 (03) : 298 - 300
  • [25] Extension theorems for spheres in the finite field setting
    Iosevich, Alex
    Koh, Doowon
    FORUM MATHEMATICUM, 2010, 22 (03) : 457 - 483
  • [26] Uniqueness theorems through the method of moving spheres
    Li, YY
    Zhu, MJ
    DUKE MATHEMATICAL JOURNAL, 1995, 80 (02) : 383 - 417
  • [27] Morera theorems for spheres through a point in CN
    Grinberg, EL
    Quinto, ET
    RECENT DEVELOPMENTS IN COMPLEX ANALYSIS AND COMPUTER ALGEBRA, 1999, 4 : 267 - 275
  • [28] ON THE NUANCING OF COMPRESSION AND EXPANSION RATIOS
    Clenci, Adrian-Constantin
    Niculescu, Rodica
    INGINERIA AUTOMOBILULUI, 2023, (67):
  • [29] An Experimental Analysis of a Polynomial Compression for the Steiner Cycle Problem
    Fafianie, Stefan
    Kratsch, Stefan
    EXPERIMENTAL ALGORITHMS, SEA 2015, 2015, 9125 : 367 - 378
  • [30] Steiner formula and Holditch-Type Theorems for homothetic Lorentzian motions
    Yuce, S.
    Kuruoglu, N.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2007, 31 (A2): : 207 - 212