Integration of quadratic Lie algebroids to Riemannian Cartan–Lie groupoids

被引:0
|
作者
Alexei Kotov
Thomas Strobl
机构
[1] University of Hradec Kralove,Faculty of Science
[2] UMI CNRS-2924,Institut Camille Jordan
[3] Instituto de Matemática Pura e Aplicada (IMPA),undefined
[4] Université Claude Bernard Lyon 1,undefined
[5] Université de Lyon,undefined
来源
关键词
Lie algebroids; Lie groupoids; Cartan connections; Multiplicative distributions; Jet spaces and jet bundles; Riemannian submersions; 58H05; 53C12; 53B21; 58A20; 53B05; 58A30;
D O I
暂无
中图分类号
学科分类号
摘要
Cartan–Lie algebroids, i.e., Lie algebroids equipped with a compatible connection, permit the definition of an adjoint representation, on the fiber as well as on the tangent of the base. We call (positive) quadratic Lie algebroids, Cartan–Lie algebroids with ad-invariant (Riemannian) metrics on their fibers and base κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} and g, respectively. We determine the necessary and sufficient conditions for a positive quadratic Lie algebroid to integrate to a Riemannian Cartan–Lie groupoid. Here we mean a Cartan–Lie groupoid G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {G}$$\end{document} equipped with a bi-invariant and inversion-invariant metric η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} on TG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\mathcal {G}$$\end{document} such that it induces by submersion the metric g on its base and its restriction to the t-fibers coincides with κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}.
引用
收藏
页码:737 / 756
页数:19
相关论文
共 50 条
  • [31] LIE ALGEBROIDS AND LIE PSEUDOALGEBRAS
    MACKENZIE, KCH
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1995, 27 : 97 - 147
  • [32] TOWARD DIFFERENTIATION AND INTEGRATION BETWEEN HOPF ALGEBROIDS AND LIE ALGEBROIDS
    Ardizzoni, Alessandro
    El Kaoutit, Laiachi
    Saracco, Paolo
    [J]. PUBLICACIONS MATEMATIQUES, 2023, 67 (01) : 3 - 88
  • [33] LIE GROUPOIDS AND ALGEBROIDS APPLIED TO THE STUDY OF UNIFORMITY AND HOMOGENEITY OF MATERIAL BODIES
    Jimenez Morales, Victor Manuel
    de Leon, Manuel
    Epstein, Marcelo
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (03): : 301 - 324
  • [34] Lie groupoids and algebroids applied to the study of uniformity and homogeneity of Cosserat media
    Manuel Jimenez, Victor
    de Leon, Manuel
    Epstein, Marcelo
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (08)
  • [35] Integration of local Lie algebras and contact groupoids
    Dazord, P.
    [J]. Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 320 (08):
  • [36] Isometric Lie 2-Group Actions on Riemannian Groupoids
    Herrera-Carmona, Juan Sebastian
    Valencia, Fabricio
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (10)
  • [37] On the integration of Poisson manifolds, Lie algebroids, and coisotropic submanifolds
    Cattaneo, AS
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2004, 67 (01) : 33 - 48
  • [38] Riemannian cubics in quadratic matrix Lie groups
    Zhang, Erchuan
    Noakes, Lyle
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 375
  • [39] Isometric Lie 2-Group Actions on Riemannian Groupoids
    Juan Sebastián Herrera-Carmona
    Fabricio Valencia
    [J]. The Journal of Geometric Analysis, 2023, 33
  • [40] Invariants of Lie algebroids
    Fernandes, RL
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2003, 19 (02) : 223 - 243