TOWARD DIFFERENTIATION AND INTEGRATION BETWEEN HOPF ALGEBROIDS AND LIE ALGEBROIDS

被引:0
|
作者
Ardizzoni, Alessandro [1 ]
El Kaoutit, Laiachi [2 ]
Saracco, Paolo [3 ]
机构
[1] Univ Turin, Dept Math Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Granada, Fac Ciencias, Dept Algebra & IEMath Granada, Fuente Nueva S-N, E-18071 Granada, Spain
[3] Univ Libre Bruxelles, Dept Mathemat, Blvd Triomphe, B-1050 Brussels, Belgium
关键词
(co)commutative Hopf algebroids; affine groupoid schemes; differen-tiation and integration; Ka?hler module; Lie-Rinehart algebras; Lie algebroids; Lie groupoids; Malgrange groupoids; finite dual; Tannaka reconstruction; MORITA THEORY;
D O I
10.5565/PUBLMAT6712301
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we set up the foundations around the notions of formal differentiation and formal integration in the context of commutative Hopf algebroids and Lie-Rinehart algebras. Specifically, we construct a contravariant functor from the category of commutative Hopf algebroids with a fixed base algebra to that of Lie-Rinehart algebras over the same algebra, the differentiation functor, which can be seen as an algebraic counterpart to the differentiation process from Lie groupoids to Lie algebroids. The other way around, we provide two interrelated contravariant functors from the category of Lie-Rinehart algebras to that of commutative Hopf algebroids, the integration functors. One of them yields a contravariant adjunction together with the differentiation functor. Under mild conditions, essentially on the base algebra, the other integration functor only induces an adjunction at the level of Galois Hopf algebroids. By employing the differentiation functor, we also analyse the geometric separability of a given morphism of Hopf algebroids. Several examples and applications are presented.
引用
收藏
页码:3 / 88
页数:86
相关论文
共 50 条
  • [1] Integration of holomorphic Lie algebroids
    Laurent-Gengoux, Camille
    Stienon, Mathieu
    Xu, Ping
    MATHEMATISCHE ANNALEN, 2009, 345 (04) : 895 - 923
  • [2] On the integration of transitive Lie algebroids
    Meinrenken, Eckhard
    ENSEIGNEMENT MATHEMATIQUE, 2021, 67 (3-4): : 423 - 454
  • [3] Groupoids and the integration of Lie algebroids
    Nistor, V
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2000, 52 (04) : 847 - 868
  • [4] Integration of holomorphic Lie algebroids
    Camille Laurent-Gengoux
    Mathieu Stiénon
    Ping Xu
    Mathematische Annalen, 2009, 345 : 895 - 923
  • [5] Duality for Hopf algebroids
    Rumynin, D
    JOURNAL OF ALGEBRA, 2000, 223 (01) : 237 - 255
  • [6] Lie algebra type noncommutative phase spaces are Hopf algebroids
    Stjepan Meljanac
    Zoran Škoda
    Martina Stojić
    Letters in Mathematical Physics, 2017, 107 : 475 - 503
  • [7] Representations of étale Lie groupoids and modules over Hopf algebroids
    Jure Kališnik
    Czechoslovak Mathematical Journal, 2011, 61 : 653 - 672
  • [8] Lie algebra type noncommutative phase spaces are Hopf algebroids
    Meljanac, Stjepan
    Skoda, Zoran
    Stojic, Martina
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (03) : 475 - 503
  • [9] REPRESENTATIONS OF ETALE LIE GROUPOIDS AND MODULES OVER HOPF ALGEBROIDS
    Kalisnik, Jure
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (03) : 653 - 672
  • [10] On duality between etale groupoids and Hopf algebroids
    Mrcun, Janez
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (01) : 267 - 282