Hopf Bifurcations in a Watt Governor with a Spring

被引:0
|
作者
Jorge Sotomayor
Luis Fernando Mello
Denis de Carvalho Braga
机构
[1] Universidade de São Paulo,Instituto de Matemática e Estatística
[2] Rua do Matão 1010,Instituto de Ciências Exatas
[3] Cidade Universitá ria,Instituto de Sistemas Elétricos e Energia
[4] Universidade Federal de Itajubá,undefined
[5] Universidade Federal de Itajubá,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper pursues the study carried out in [10], focusing on the codimension one Hopf bifurcations in the hexagonal Watt governor system. Here are studied Hopf bifurcations of codimensions two, three and four and the pertinent Lyapunov stability coefficients and bifurcation diagrams. This allows to determine the number, types and positions of bifurcating small amplitude periodic orbits. As a consequence it is found an open region in the parameter space where two attracting periodic orbits coexist with an attracting equilibrium point.
引用
收藏
页码:288 / 299
页数:11
相关论文
共 50 条
  • [31] On the stability of HOPF bifurcations for maps
    D'Amico, MB
    Paolini, EE
    Moiola, JL
    PROCEEDINGS OF THE 2001 WORKSHOP ON NONLINEAR DYNAMICS OF ELECTRONIC SYSTEMS, 2001, : 209 - 212
  • [32] Hopf bifurcations in dynamical systems
    Rionero, Salvatore
    RICERCHE DI MATEMATICA, 2019, 68 (02) : 811 - 840
  • [33] Simplest normal forms of Hopf and generalized Hopf bifurcations
    Yu, P
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (10): : 1917 - 1939
  • [34] HOPF BIFURCATIONS IN TORSIONAL DYNAMICS
    IRAVANI, MR
    SEMLYEN, A
    ABED, EH
    HAMDAN, AMA
    ALEXANDER, JC
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1992, 7 (01) : 28 - 36
  • [35] SILNIKOV-HOPF BIFURCATIONS
    DENG, B
    SAKAMOTO, K
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 119 (01) : 1 - 23
  • [36] EQUIVALENCE OF DEGENERATE HOPF BIFURCATIONS
    EDALAT, A
    NONLINEARITY, 1991, 4 (03) : 685 - 695
  • [37] On Splitting of Separatrices Corresponding to the Operating Mode of the Watt Governor
    Markeev, A. P.
    MECHANICS OF SOLIDS, 2023, 58 (08) : 2731 - 2737
  • [38] The simplest parametrized normal forms of Hopf and generalized Hopf bifurcations
    Yu, Pei
    Chen, Guanrong
    NONLINEAR DYNAMICS, 2007, 50 (1-2) : 297 - 313
  • [39] The simplest parametrized normal forms of Hopf and generalized Hopf bifurcations
    Pei Yu
    Guanrong Chen
    Nonlinear Dynamics, 2007, 50 : 297 - 313
  • [40] On Splitting of Separatrices Corresponding to the Operating Mode of the Watt Governor
    A. P. Markeev
    Mechanics of Solids, 2023, 58 : 2731 - 2737