Hopf bifurcations in dynamical systems

被引:19
|
作者
Rionero, Salvatore [1 ]
机构
[1] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, Complesso Univ Monte S Angelo, I-80126 Naples, Italy
关键词
Instability; Bifurcations; Hopf and others unsteady bifurcations; 76E25; 76E06; 35B35; CONVECTION;
D O I
10.1007/s11587-019-00440-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The onset of instability in autonomous dynamical systems (ADS) of ordinary differential equations is investigated. Binary, ternary and quaternary ADS are taken into account. The stability frontier of the spectrum is analyzed. Conditions necessary and sufficient for the occurring of Hopf, Hopf-Steady, Double-Hopf and unsteady aperiodic bifurcations-in closed form-and conditions guaranteeing the absence of unsteady bifurcations via symmetrizability, are obtained. The continuous triopoly Cournot game of mathematical economy is taken into account and it is shown that the ternary ADS governing the Nash equilibrium stability, is symmetrizable. The onset of Hopf bifurcations in rotatory thermal hydrodynamics is studied and the Hopf bifurcation number (threshold that the Taylor number crosses at the onset of Hopf bifurcations) is obtained.
引用
收藏
页码:811 / 840
页数:30
相关论文
共 50 条
  • [1] Hopf bifurcations in dynamical systems
    Salvatore Rionero
    [J]. Ricerche di Matematica, 2019, 68 : 811 - 840
  • [2] Discretizing dynamical systems with Hopf-Hopf bifurcations
    Paez Chavez, Joseph
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (01) : 185 - 201
  • [3] Discretizing dynamical systems with generalized Hopf bifurcations
    Paez Chavez, Joseph
    [J]. NUMERISCHE MATHEMATIK, 2011, 118 (02) : 229 - 246
  • [4] Discretizing dynamical systems with generalized Hopf bifurcations
    Joseph Páez Chávez
    [J]. Numerische Mathematik, 2011, 118 : 229 - 246
  • [5] HOPF BIFURCATIONS IN DYNAMICAL SYSTEMS VIA ALGEBRAIC TOPOLOGICAL METHOD
    Jawarneh, Ibrahim
    Altawallbeh, Zuhier
    [J]. MATEMATICKI VESNIK, 2023, 75 (03): : 216 - 224
  • [6] A DYNAMICAL SYSTEM WITH HOPF BIFURCATIONS AND CATASTROPHES
    MURATORI, S
    RINALDI, S
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1989, 29 (01) : 1 - 15
  • [7] HIGHER DIMENSIONAL TOPOLOGY AND GENERALIZED HOPF BIFURCATIONS FOR DISCRETE DYNAMICAL SYSTEMS
    Barge, Hector
    Sanjurjo, Jose M. R.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (06): : 2585 - 2601
  • [8] Local versus global stability in dynamical systems with consecutive Hopf bifurcations
    Böttcher, Philipp C.
    Schäfer, Benjamin
    Kettemann, Stefan
    Agert, Carsten
    Witthaut, Dirk
    [J]. Physical Review Research, 2023, 5 (03):
  • [9] Using Zigzag Persistent Homology to Detect Hopf Bifurcations in Dynamical Systems
    Tymochko, Sarah
    Munch, Elizabeth
    Khasawneh, Firas A.
    [J]. ALGORITHMS, 2020, 13 (11) : 1 - 13
  • [10] Twenty Hopf-like bifurcations in piecewise-smooth dynamical systems
    Simpson, D. J. W.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2022, 970 : 1 - 80