Discretizing dynamical systems with generalized Hopf bifurcations

被引:1
|
作者
Paez Chavez, Joseph [1 ]
机构
[1] Escuela Super Politecn Litoral, Inst Ciencias Matemat, Guayaquil, Ecuador
关键词
DIFFERENTIAL-EQUATION; SACKER BIFURCATIONS; TAKENS-BOGDANOV; POINTS; COMPUTATION; ODES;
D O I
10.1007/s00211-010-0340-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the discretizations of parameter-dependent, continuous-time dynamical systems. We show that the general one-step methods shift a generalized Hopf bifurcation and turn it into a generalized Neimark-Sacker point. We analyze the effect of discretization methods on the emanating Hopf curve. In particular, we obtain estimates for the eigenvalues of the discretized system along this curve. A detailed analysis of the discretized first Lyapunov coefficient is also given. The results are illustrated by a numerical example. Dynamical consequences are discussed.
引用
收藏
页码:229 / 246
页数:18
相关论文
共 50 条
  • [1] Discretizing dynamical systems with generalized Hopf bifurcations
    Joseph Páez Chávez
    [J]. Numerische Mathematik, 2011, 118 : 229 - 246
  • [2] Discretizing dynamical systems with Hopf-Hopf bifurcations
    Paez Chavez, Joseph
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (01) : 185 - 201
  • [3] Hopf bifurcations in dynamical systems
    Salvatore Rionero
    [J]. Ricerche di Matematica, 2019, 68 : 811 - 840
  • [4] Hopf bifurcations in dynamical systems
    Rionero, Salvatore
    [J]. RICERCHE DI MATEMATICA, 2019, 68 (02) : 811 - 840
  • [5] HIGHER DIMENSIONAL TOPOLOGY AND GENERALIZED HOPF BIFURCATIONS FOR DISCRETE DYNAMICAL SYSTEMS
    Barge, Hector
    Sanjurjo, Jose M. R.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (06): : 2585 - 2601
  • [6] ON GENERALIZED HOPF BIFURCATIONS
    HUSEYIN, K
    ATADAN, AS
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1984, 106 (04): : 327 - 334
  • [7] HOPF BIFURCATIONS IN DYNAMICAL SYSTEMS VIA ALGEBRAIC TOPOLOGICAL METHOD
    Jawarneh, Ibrahim
    Altawallbeh, Zuhier
    [J]. MATEMATICKI VESNIK, 2023, 75 (03): : 216 - 224
  • [8] A DYNAMICAL SYSTEM WITH HOPF BIFURCATIONS AND CATASTROPHES
    MURATORI, S
    RINALDI, S
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 1989, 29 (01) : 1 - 15
  • [9] Local versus global stability in dynamical systems with consecutive Hopf bifurcations
    Böttcher, Philipp C.
    Schäfer, Benjamin
    Kettemann, Stefan
    Agert, Carsten
    Witthaut, Dirk
    [J]. Physical Review Research, 2023, 5 (03):
  • [10] Using Zigzag Persistent Homology to Detect Hopf Bifurcations in Dynamical Systems
    Tymochko, Sarah
    Munch, Elizabeth
    Khasawneh, Firas A.
    [J]. ALGORITHMS, 2020, 13 (11) : 1 - 13