The heavy quarkonium inclusive decays using the principle of maximum conformality

被引:0
|
作者
Qing Yu
Xing-Gang Wu
Jun Zeng
Xu-Dong Huang
Huai-Min Yu
机构
[1] Chongqing University,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The next-to-next-to-leading order (NNLO) pQCD correction to the inclusive decays of the heavy quarkonium ηQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _Q$$\end{document} (Q being c or b) has been done in the literature within the framework of nonrelativistic QCD. One may observe that the NNLO decay width still has large conventional renormalization scale dependence due to its weaker pQCD convergence, e.g. about -34%+4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( ^{+4\%}_{-34\%}\right) $$\end{document} for ηc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _c$$\end{document} and -9%+0.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( ^{+0.0}_{-9\%}\right) $$\end{document} for ηb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _b$$\end{document}, by varying the scale within the range of [mQ,4mQ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[m_Q, 4m_Q]$$\end{document}. The principle of maximum conformality (PMC) provides a systematic way to fix the αs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _s$$\end{document}-running behavior of the process, which satisfies the requirements of renormalization group invariance and eliminates the conventional renormalization scheme and scale ambiguities. Using the PMC single-scale method, we show that the resultant PMC conformal series is renormalization scale independent, and the precision of the ηQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _Q$$\end{document} inclusive decay width can be greatly improved. Taking the relativistic correction O(αsv2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\alpha _{s}v^2)$$\end{document} into consideration, the ratios of the ηQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{Q}$$\end{document} decays to light hadrons or γγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \gamma $$\end{document} are: RηcNNLO|PMC=(3.93-0.24+0.26)×103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^\mathrm{NNLO}_{\eta _c}|_{\mathrm{PMC}}=(3.93^{+0.26}_{-0.24})\times 10^3$$\end{document} and RηbNNLO|PMC=(22.85-0.87+0.90)×103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^\mathrm{NNLO}_{\eta _b}|_{\mathrm{PMC}}=(22.85^{+0.90}_{-0.87})\times 10^3$$\end{document}, respectively. Here the errors are for Δαs(MZ)=±0.0011\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \alpha _s(M_Z) = \pm 0.0011$$\end{document}. As a step forward, by applying the Pade´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{e}$$\end{document} approximation approach (PAA) over the PMC conformal series, we obtain approximate NNNLO predictions for those two ratios, e.g. RηcNNNLO|PAA+PMC=(5.66-0.55+0.65)×103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\mathrm{NNNLO}}_{\eta _c}|_{\mathrm{PAA+PMC}} =(5.66^{+0.65}_{-0.55})\times 10^3$$\end{document} and RηbNNNLO|PAA+PMC=(26.02-1.17+1.24)×103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\mathrm{NNNLO}}_{\eta _b}|_{\mathrm{PAA+PMC}}=(26.02^{+1.24}_{-1.17})\times 10^3$$\end{document}. The RηcNNNLO|PAA+PMC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\mathrm{NNNLO}}_{\eta _c}|_{\mathrm{PAA+PMC}}$$\end{document} ratio agrees with the latest PDG value Rηcexp=(5.3-1.4+2.4)×103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\eta _c}^\mathrm{{exp}}=(5.3_{-1.4}^{+2.4})\times 10^3$$\end{document}, indicating the necessity of a strict calculation of NNNLO terms.
引用
收藏
相关论文
共 50 条
  • [31] Thrust distribution in electron-positron annihilation using the principle of maximum conformality
    Wang, Sheng-Quan
    Brodsky, Stanley J.
    Wu, Xing-Gang
    Di Giustino, Leonardo
    PHYSICAL REVIEW D, 2019, 99 (11)
  • [32] W boson inclusive decays to quarkonium and Bc(*) meson at the LHC
    Qiao, Cong-Feng
    Sun, Li-Ping
    Yang, De-Shan
    Zhu, Rui-Lin
    EUROPEAN PHYSICAL JOURNAL C, 2011, 71 (10): : 1 - 14
  • [33] New predictions for inclusive heavy-quarkonium P-wave decays -: art. no. 012003
    Brambilla, N
    Eiras, D
    Pineda, A
    Soto, J
    Vairo, A
    PHYSICAL REVIEW LETTERS, 2002, 88 (01) : 4 - 120034
  • [34] Properties of the decay H→γγ using the approximate αs~4 corrections and the principle of maximum conformality
    余青
    吴兴刚
    王声权
    黄旭东
    申建明
    曾军
    Chinese Physics C, 2019, (09) : 16 - 22
  • [35] Ambiguities in the calculation of leptonic decays of excited heavy quarkonium
    Lansberg, JP
    HADRONIC PHYSICS, 2005, 775 : 11 - 21
  • [36] Factorization for radiative heavy quarkonium decays into scalar Glueball
    Ruilin Zhu
    Journal of High Energy Physics, 2015
  • [37] 2 HIGGS DOUBLETS AND HEAVY-QUARKONIUM DECAYS
    ROBINETT, RW
    PHYSICAL REVIEW D, 1986, 33 (03): : 736 - 740
  • [38] Dipion decays of heavy quarkonium in the field correlator method
    Simonov, Yu. A.
    PHYSICS OF ATOMIC NUCLEI, 2008, 71 (06) : 1048 - 1076
  • [39] RELATIVISTIC CORRECTIONS TO THE ELECTROMAGNETIC DECAYS OF HEAVY QUARKONIUM STATES
    BERGSTROM, L
    SNELLMAN, H
    TENGSTRAND, G
    PHYSICS LETTERS B, 1979, 82 (3-4) : 419 - 422
  • [40] Rescattering effects of baryon and antibaryon in heavy quarkonium decays
    Chen, Hong
    Ping, Rong-Gang
    PHYSICS LETTERS B, 2007, 644 (01) : 54 - 58