The heavy quarkonium inclusive decays using the principle of maximum conformality

被引:0
|
作者
Qing Yu
Xing-Gang Wu
Jun Zeng
Xu-Dong Huang
Huai-Min Yu
机构
[1] Chongqing University,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The next-to-next-to-leading order (NNLO) pQCD correction to the inclusive decays of the heavy quarkonium ηQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _Q$$\end{document} (Q being c or b) has been done in the literature within the framework of nonrelativistic QCD. One may observe that the NNLO decay width still has large conventional renormalization scale dependence due to its weaker pQCD convergence, e.g. about -34%+4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( ^{+4\%}_{-34\%}\right) $$\end{document} for ηc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _c$$\end{document} and -9%+0.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( ^{+0.0}_{-9\%}\right) $$\end{document} for ηb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _b$$\end{document}, by varying the scale within the range of [mQ,4mQ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[m_Q, 4m_Q]$$\end{document}. The principle of maximum conformality (PMC) provides a systematic way to fix the αs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _s$$\end{document}-running behavior of the process, which satisfies the requirements of renormalization group invariance and eliminates the conventional renormalization scheme and scale ambiguities. Using the PMC single-scale method, we show that the resultant PMC conformal series is renormalization scale independent, and the precision of the ηQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _Q$$\end{document} inclusive decay width can be greatly improved. Taking the relativistic correction O(αsv2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\alpha _{s}v^2)$$\end{document} into consideration, the ratios of the ηQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{Q}$$\end{document} decays to light hadrons or γγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \gamma $$\end{document} are: RηcNNLO|PMC=(3.93-0.24+0.26)×103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^\mathrm{NNLO}_{\eta _c}|_{\mathrm{PMC}}=(3.93^{+0.26}_{-0.24})\times 10^3$$\end{document} and RηbNNLO|PMC=(22.85-0.87+0.90)×103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^\mathrm{NNLO}_{\eta _b}|_{\mathrm{PMC}}=(22.85^{+0.90}_{-0.87})\times 10^3$$\end{document}, respectively. Here the errors are for Δαs(MZ)=±0.0011\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \alpha _s(M_Z) = \pm 0.0011$$\end{document}. As a step forward, by applying the Pade´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{e}$$\end{document} approximation approach (PAA) over the PMC conformal series, we obtain approximate NNNLO predictions for those two ratios, e.g. RηcNNNLO|PAA+PMC=(5.66-0.55+0.65)×103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\mathrm{NNNLO}}_{\eta _c}|_{\mathrm{PAA+PMC}} =(5.66^{+0.65}_{-0.55})\times 10^3$$\end{document} and RηbNNNLO|PAA+PMC=(26.02-1.17+1.24)×103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\mathrm{NNNLO}}_{\eta _b}|_{\mathrm{PAA+PMC}}=(26.02^{+1.24}_{-1.17})\times 10^3$$\end{document}. The RηcNNNLO|PAA+PMC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\mathrm{NNNLO}}_{\eta _c}|_{\mathrm{PAA+PMC}}$$\end{document} ratio agrees with the latest PDG value Rηcexp=(5.3-1.4+2.4)×103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\eta _c}^\mathrm{{exp}}=(5.3_{-1.4}^{+2.4})\times 10^3$$\end{document}, indicating the necessity of a strict calculation of NNNLO terms.
引用
收藏
相关论文
共 50 条
  • [21] A possible tetraquark state in heavy quarkonium decays
    Shen, P. N.
    Guo, F. K.
    Chiang, H. C.
    Zou, B. S.
    Ping, R. G.
    Zhao, Q.
    PROCEEDINGS OF THE 11TH WORKSHOP ON THE PHYSICS OF EXCITED NUCLEONS, 2008, : 215 - 218
  • [22] Some problems in heavy-quarkonium decays
    N. N. Achasov
    A. V. Kiselev
    A. A. Kozhevnikov
    G. N. Shestakov
    Physics of Atomic Nuclei, 2015, 78 : 428 - 435
  • [23] Threshold Effects in Heavy Quarkonium Spectroscopy and Decays
    Ferretti, J.
    PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON MESON-NUCLEON PHYSICS AND THE STRUCTURE OF THE NUCLEON, 2020, 2249
  • [24] VECTOR QUARKONIUM IN DECAYS OF HEAVY HIGGS PARTICLES
    DOROSHENKO, MN
    KARTVELISHVILI, VG
    CHIKOVANI, EG
    ESAKIYA, SM
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1987, 46 (03): : 493 - 495
  • [25] Z-BOSON DECAYS TO HEAVY QUARKONIUM
    BARGER, V
    CHEUNG, K
    KEUNG, WY
    PHYSICAL REVIEW D, 1990, 41 (05): : 1541 - 1546
  • [26] HEAVY QUARKONIUM DECAYS AND THE RENORMALIZATION-GROUP
    DUNCAN, A
    MUELLER, A
    PHYSICS LETTERS B, 1980, 93 (1-2) : 119 - 124
  • [27] Inclusive production of heavy quarkonium ηQ via Z boson decays within the framework of nonrelativistic QCD
    Zheng, Xu-Chang
    Chang, Chao-Hsi
    Wu, Xing-Gang
    Huang, Xu-Dong
    Wang, Guang-Yu
    PHYSICAL REVIEW D, 2021, 104 (05)
  • [28] Some problems in heavy-quarkonium decays
    Achasov, N. N.
    Kiselev, A. V.
    Kozhevnikov, A. A.
    Shestakov, G. N.
    PHYSICS OF ATOMIC NUCLEI, 2015, 78 (03) : 428 - 435
  • [29] Setting the renormalization scale in QCD: The principle of maximum conformality
    Brodsky, Stanley J.
    Di Giustino, Leonardo
    PHYSICAL REVIEW D, 2012, 86 (08):
  • [30] Implications of the principle of maximum conformality for the QCD strong coupling
    Deur, Alexandre
    Shen, Jian-Ming
    Wu, Xing-Gang
    Brodsky, Stanley J.
    de Teramond, Guy F.
    PHYSICS LETTERS B, 2017, 773 : 98 - 104