The heavy quarkonium inclusive decays using the principle of maximum conformality

被引:0
|
作者
Qing Yu
Xing-Gang Wu
Jun Zeng
Xu-Dong Huang
Huai-Min Yu
机构
[1] Chongqing University,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The next-to-next-to-leading order (NNLO) pQCD correction to the inclusive decays of the heavy quarkonium ηQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _Q$$\end{document} (Q being c or b) has been done in the literature within the framework of nonrelativistic QCD. One may observe that the NNLO decay width still has large conventional renormalization scale dependence due to its weaker pQCD convergence, e.g. about -34%+4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( ^{+4\%}_{-34\%}\right) $$\end{document} for ηc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _c$$\end{document} and -9%+0.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( ^{+0.0}_{-9\%}\right) $$\end{document} for ηb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _b$$\end{document}, by varying the scale within the range of [mQ,4mQ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[m_Q, 4m_Q]$$\end{document}. The principle of maximum conformality (PMC) provides a systematic way to fix the αs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _s$$\end{document}-running behavior of the process, which satisfies the requirements of renormalization group invariance and eliminates the conventional renormalization scheme and scale ambiguities. Using the PMC single-scale method, we show that the resultant PMC conformal series is renormalization scale independent, and the precision of the ηQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _Q$$\end{document} inclusive decay width can be greatly improved. Taking the relativistic correction O(αsv2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(\alpha _{s}v^2)$$\end{document} into consideration, the ratios of the ηQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{Q}$$\end{document} decays to light hadrons or γγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \gamma $$\end{document} are: RηcNNLO|PMC=(3.93-0.24+0.26)×103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^\mathrm{NNLO}_{\eta _c}|_{\mathrm{PMC}}=(3.93^{+0.26}_{-0.24})\times 10^3$$\end{document} and RηbNNLO|PMC=(22.85-0.87+0.90)×103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^\mathrm{NNLO}_{\eta _b}|_{\mathrm{PMC}}=(22.85^{+0.90}_{-0.87})\times 10^3$$\end{document}, respectively. Here the errors are for Δαs(MZ)=±0.0011\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \alpha _s(M_Z) = \pm 0.0011$$\end{document}. As a step forward, by applying the Pade´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{e}$$\end{document} approximation approach (PAA) over the PMC conformal series, we obtain approximate NNNLO predictions for those two ratios, e.g. RηcNNNLO|PAA+PMC=(5.66-0.55+0.65)×103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\mathrm{NNNLO}}_{\eta _c}|_{\mathrm{PAA+PMC}} =(5.66^{+0.65}_{-0.55})\times 10^3$$\end{document} and RηbNNNLO|PAA+PMC=(26.02-1.17+1.24)×103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\mathrm{NNNLO}}_{\eta _b}|_{\mathrm{PAA+PMC}}=(26.02^{+1.24}_{-1.17})\times 10^3$$\end{document}. The RηcNNNLO|PAA+PMC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\mathrm{NNNLO}}_{\eta _c}|_{\mathrm{PAA+PMC}}$$\end{document} ratio agrees with the latest PDG value Rηcexp=(5.3-1.4+2.4)×103\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\eta _c}^\mathrm{{exp}}=(5.3_{-1.4}^{+2.4})\times 10^3$$\end{document}, indicating the necessity of a strict calculation of NNNLO terms.
引用
收藏
相关论文
共 50 条
  • [1] The heavy quarkonium inclusive decays using the principle of maximum conformality
    Yu, Qing
    Wu, Xing-Gang
    Zenge, Jun
    Huang, Xu-Dong
    Yu, Huai-Min
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (05):
  • [2] The ηc decays into light hadrons using the principle of maximum conformality
    Du, Bo-Lun
    Wu, Xing-Gang
    Zeng, Jun
    Bu, Shi
    Shen, Jian-Ming
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (01):
  • [3] Hadronic Decays of the Spin-Singlet Heavy Quarkomium under the Principle of Maximum Conformality
    Zhang Qiong-Lian
    Wu Xing-Gang
    Zheng Xu-Chang
    Wang Sheng-Quan
    Fu Hai-Bing
    Fang Zhen-Yun
    CHINESE PHYSICS LETTERS, 2014, 31 (05)
  • [4] Inclusive decays of heavy quarkonium to light particles
    Brambilla, N
    Eiras, D
    Pineda, A
    Soto, J
    Vairo, A
    PHYSICAL REVIEW D, 2003, 67 (03)
  • [5] A theoretical review of heavy quarkonium inclusive decays.
    Vairo, A
    MODERN PHYSICS LETTERS A, 2004, 19 (04) : 253 - 269
  • [6] Inclusive quarkonium decays
    Brambilla, N
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 133 : 202 - 207
  • [7] Inclusive electromagnetic decays of the heavy quarkonium at next to leading log accuracy
    Pineda, A
    ACTA PHYSICA POLONICA B, 2003, 34 (11): : 5295 - 5304
  • [8] Relation Between Pole and Running Masses of Heavy Quarks Using the Principle of Maximum Conformality
    Salinas-Arizmendi, Daniel
    Schmidt, Ivan
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2024, 2024 (03):
  • [9] Reanalysis of the higher order perturbative QCD corrections to hadronic Z decays using the principle of maximum conformality
    Wang, Sheng-Quan
    Wu, Xing-Gang
    Brodsky, Stanley J.
    PHYSICAL REVIEW D, 2014, 90 (03):
  • [10] New results on inclusive quarkonium decays
    Vairo, A
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 115 : 166 - 169