Advances in Modern Information Technologies for Data Analysis in CRYO-EM and XFEL Experiments

被引:0
|
作者
S. A. Bobkov
A. B. Teslyuk
T. N. Baymukhametov
E. B. Pichkur
Yu. M. Chesnokov
D. Assalauova
A. A. Poyda
A. M. Novikov
S. I. Zolotarev
K. A. Ikonnikova
V. E. Velikhov
I. A. Vartanyants
A. L. Vasiliev
V. A. Ilyin
机构
[1] National Research Centre “Kurchatov Institute”,
[2] Moscow Institute of Physics and Technology (State University),undefined
[3] Deutsches Elektronen-Synchrotron DESY,undefined
[4] Shubnikov Institute of Crystallography,undefined
[5] Federal Scientific Research Centre “Crystallography and Photonics,undefined
[6] ” Russian Academy of Sciences,undefined
[7] National Research Nuclear University MEPhI,undefined
来源
Crystallography Reports | 2020年 / 65卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A new approach to the organization of data pipelining in cryo-electron microscopy (Cryo-EM) and X-ray free-electron laser (XFEL) experiments is presented. This approach, based on the progress in information technologies (IT) due to the development of containerization techniques, allows one to separate user’s work at the application level from the developments of IT experts at the system and middleware levels. A user must only perform two simple operations: pack application packages in containers and write a workflow with data processing logic in a standard format. Some examples of containerized workflows for Cryo-EM and XFEL experiments on study of the spatial structure of single biological nanoobjects (viruses, macromolecules, etc.) are discussed. Examples of program codes for installing applied packages in Docker containers and examples of applied workflows written in the high-level language CWL are presented at the site of the project. The examples have comments, which may help an IT-inexperienced researcher to gain an idea of how to organize Docker containers and form CWL workflows for Cryo-EM and XFEL data pipelining.
引用
收藏
页码:1081 / 1092
页数:11
相关论文
共 50 条
  • [1] Advances in Modern Information Technologies for Data Analysis in CRYO-EM and XFEL Experiments
    Bobkov, S. A.
    Teslyuk, A. B.
    Baymukhametov, T. N.
    Pichkur, E. B.
    Chesnokov, Yu M.
    Assalauova, D.
    Poyda, A. A.
    Novikov, A. M.
    Zolotarev, S., I
    Ikonnikova, K. A.
    Velikhov, V. E.
    Vartanyants, I. A.
    Vasiliev, A. L.
    Ilyin, V. A.
    CRYSTALLOGRAPHY REPORTS, 2020, 65 (06) : 1081 - 1092
  • [2] Recent advances in data collection for Cryo-EM methods
    Cheng, Anchi
    Yu, Yue
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2024, 86
  • [3] Persistent topology for cryo-EM data analysis
    Xia, Kelin
    Wei, Guo-Wei
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2015, 31 (08) : 1 - 29
  • [4] Cryo-EM advances in RNA structure determination
    Haiyun Ma
    Xinyu Jia
    Kaiming Zhang
    Zhaoming Su
    Signal Transduction and Targeted Therapy, 7
  • [5] Cryo-EM advances in RNA structure determination
    Ma, Haiyun
    Jia, Xinyu
    Zhang, Kaiming
    Su, Zhaoming
    SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2022, 7 (01)
  • [6] Cryo-EM advances in GPCR structure determination
    Shihoya, Wataru
    Iwama, Aika
    Sano, Fumiya K.
    Nureki, Osamu
    JOURNAL OF BIOCHEMISTRY, 2024, 176 (01): : 1 - 10
  • [7] UNIFIED DATA RESOURCE FOR CRYO-EM
    Lawson, Catherine L.
    METHODS IN ENZYMOLOGY, VOL 483: CRYO-EM, PART C: ANALYSES, INTERPRETATION, AND CASE STUDIES, 2010, 483 : 73 - 90
  • [8] Processing of Cryo-EM Movie Data
    Ripstein, Z. A.
    Rubinstein, J. L.
    RESOLUTION REVOLUTION: RECENT ADVANCES IN CRYOEM, 2016, 579 : 103 - 124
  • [9] Integrating cryo-EM and NMR data
    Geraets, James A.
    Pothula, Karunakar R.
    Schroeder, Gunnar F.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2020, 61 : 173 - 181
  • [10] Cryo-EM Data Are Superior to Contact and Interface Information in Integrative Modeling
    de Vries, Sjoerd J.
    de Beauchene, Isaure Chauvot
    Schindler, Christina E. M.
    Zacharias, Martin
    BIOPHYSICAL JOURNAL, 2016, 110 (04) : 785 - 797