Advances in Modern Information Technologies for Data Analysis in CRYO-EM and XFEL Experiments

被引:0
|
作者
S. A. Bobkov
A. B. Teslyuk
T. N. Baymukhametov
E. B. Pichkur
Yu. M. Chesnokov
D. Assalauova
A. A. Poyda
A. M. Novikov
S. I. Zolotarev
K. A. Ikonnikova
V. E. Velikhov
I. A. Vartanyants
A. L. Vasiliev
V. A. Ilyin
机构
[1] National Research Centre “Kurchatov Institute”,
[2] Moscow Institute of Physics and Technology (State University),undefined
[3] Deutsches Elektronen-Synchrotron DESY,undefined
[4] Shubnikov Institute of Crystallography,undefined
[5] Federal Scientific Research Centre “Crystallography and Photonics,undefined
[6] ” Russian Academy of Sciences,undefined
[7] National Research Nuclear University MEPhI,undefined
来源
Crystallography Reports | 2020年 / 65卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A new approach to the organization of data pipelining in cryo-electron microscopy (Cryo-EM) and X-ray free-electron laser (XFEL) experiments is presented. This approach, based on the progress in information technologies (IT) due to the development of containerization techniques, allows one to separate user’s work at the application level from the developments of IT experts at the system and middleware levels. A user must only perform two simple operations: pack application packages in containers and write a workflow with data processing logic in a standard format. Some examples of containerized workflows for Cryo-EM and XFEL experiments on study of the spatial structure of single biological nanoobjects (viruses, macromolecules, etc.) are discussed. Examples of program codes for installing applied packages in Docker containers and examples of applied workflows written in the high-level language CWL are presented at the site of the project. The examples have comments, which may help an IT-inexperienced researcher to gain an idea of how to organize Docker containers and form CWL workflows for Cryo-EM and XFEL data pipelining.
引用
收藏
页码:1081 / 1092
页数:11
相关论文
共 50 条
  • [31] Predicting protein structure from cryo-EM data
    Chirigati, Fernando
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (02): : 96 - 96
  • [32] Predicting protein structure from cryo-EM data
    Fernando Chirigati
    Nature Computational Science, 2021, 1 : 96 - 96
  • [33] Processing of Structurally Heterogeneous Cryo-EM Data in RELION
    Scheres, S. H. W.
    RESOLUTION REVOLUTION: RECENT ADVANCES IN CRYOEM, 2016, 579 : 125 - 157
  • [34] Localized reconstruction in Scipion expedites the analysis of symmetry mismatches in cryo-EM data
    Abrishami, Vahid
    Ilca, Serban L.
    Gomez-Blanco, Josue
    Rissanen, Ilona
    de La Rosa-Trevin, Jose Miguel
    Reddy, Vijay S.
    Carazo, Jose-Maria
    Huiskonen, Juha T.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2021, 160 : 43 - 52
  • [35] Segmentation and morphological analysis of amyloid fibrils from cryo-EM image data
    Matthias Weber
    Matthias Neumann
    Matthias Schmidt
    Peter Benedikt Pfeiffer
    Akanksha Bansal
    Marcus Fändrich
    Volker Schmidt
    Journal of Mathematics in Industry, 13
  • [36] Segmentation and morphological analysis of amyloid fibrils from cryo-EM image data
    Weber, Matthias
    Neumann, Matthias
    Schmidt, Matthias
    Pfeiffer, Peter Benedikt
    Bansal, Akanksha
    Faendrich, Marcus
    Schmidt, Volker
    JOURNAL OF MATHEMATICS IN INDUSTRY, 2023, 13 (01)
  • [37] Fast and accurate defocus modulation for improved tunability of cryo-EM experiments
    Danev, Radostin
    Iijima, Hirofumi
    Matsuzaki, Mizuki
    Motoki, Sohei
    IUCRJ, 2020, 7 : 566 - 574
  • [38] Advances in the molecular dynamics flexible fitting method for cryo-EM modeling
    McGreevy, Ryan
    Teo, Ivan
    Singharoy, Abhishek
    Schulten, Klaus
    METHODS, 2016, 100 : 50 - 60
  • [39] Single-particle cryo-EM analysis of the purinosome
    Calise, S. J.
    Molfino, J.
    Dickinson, M. S.
    Quispe, J.
    Kollman, J. M.
    MOLECULAR BIOLOGY OF THE CELL, 2023, 34 (02) : 675 - 676
  • [40] Cryo-EM analysis of a membrane protein embedded in the liposome
    Yao, Xia
    Fan, Xiao
    Yan, Nieng
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (31) : 18497 - 18503