Extended cyclic codes, maximal arcs and ovoids

被引:0
|
作者
Kanat Abdukhalikov
Duy Ho
机构
[1] UAE University,
[2] Institute of Mathematics and Mathematical Modeling,undefined
来源
关键词
Extended cyclic codes; MDS codes; Hyperovals; Maximal arcs; Ovoids; 05B25; 94B15; 51E15; 51E21; 51E22;
D O I
暂无
中图分类号
学科分类号
摘要
We show that extended cyclic codes over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} with parameters [q+2,3,q]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[q+2,3,q]$$\end{document}, q=2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2^m$$\end{document}, determine regular hyperovals. We also show that extended cyclic codes with parameters [qt-q+t,3,qt-q]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[qt-q+t,3,qt-q]$$\end{document}, 1<t<q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<t<q$$\end{document}, q is a power of t, determine (cyclic) Denniston maximal arcs. Similarly, cyclic codes with parameters [q2+1,4,q2-q]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[q^2+1,4,q^2-q]$$\end{document} are equivalent to ovoid codes obtained from elliptic quadrics in PG(3, q). Finally, we give simple presentations of Denniston maximal arcs in PG(2, q) and elliptic quadrics in PG(3, q).
引用
收藏
页码:2283 / 2294
页数:11
相关论文
共 50 条
  • [21] New classes of cyclic extended Goppa codes
    Berger, TP
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) : 1264 - 1266
  • [22] BASIC AND EXTENDED CYCLIC HAMMING CODES.
    Owens
    Harknett
    Electronic Engineering (London), 1976, 48 (575): : 45 - 47
  • [23] Self-dual extended cyclic codes
    Conchita Martínez-Pérez
    Wolfgang Willems
    Applicable Algebra in Engineering, Communication and Computing, 2006, 17 : 1 - 16
  • [24] A NOTE ON SYNCHRONIZATION RECOVERY WITH EXTENDED CYCLIC CODES
    WELDON, EJ
    INFORMATION AND CONTROL, 1968, 13 (04): : 354 - &
  • [25] SUMMETRY PROPERTIES OF SOME EXTENDED CYCLIC CODES
    PETERSON, WW
    PRANGE, E
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1964, 10 (04) : 399 - &
  • [26] Self-dual extended cyclic codes
    Martínez-Pérez, C
    Willems, W
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2006, 17 (01) : 1 - 16
  • [27] Extended Cyclic Codes Sandwiched Between Reed-Muller Codes
    Xu, Yan
    Ji, Changjiang
    Tao, Ran
    Hu, Sihuang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (01) : 138 - 146
  • [28] Extended Cyclic Codes Sandwiched Between Reed-Muller Codes
    Ji, Changjiang
    Xu, Yan
    Hu, Sihuang
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 444 - 449
  • [29] Maximal partial ovoids and maximal partial spreads in hermitian generalized quadrangles
    Metsch, K.
    Storme, L.
    JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (02) : 101 - 116
  • [30] Maximal arcs and disjoint maximal arcs in projective planes of order 16
    Hamilton N.
    Stoichev S.D.
    Tonchev V.D.
    Journal of Geometry, 2000, 67 (1-2) : 117 - 126