Gradient information distillation network for real-time single-image super-resolution

被引:1
|
作者
Bin Meng
Lining Wang
Zheng He
Gwanggil Jeon
Qingyu Dou
Xiaomin Yang
机构
[1] Sichuan University,College of Electronics and Information Engineering
[2] Sichuan University,School of Aeronautics & Astronautics
[3] Incheon National University,Department of Embedded Systems Engineering
[4] Sichuan University,The Center of Gerontology and Geriatrics, West China Hospital
来源
关键词
Gradient information distillation; Super-resolution; Real-time; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
In recent years, deep convolutional neural networks have played an increasingly important role in single-image super-resolution (SR). However, with the increase of the depth and width of networks, the super-resolution methods based on convolution neural networks are facing training difficulties, memory consumption, running slowness and other problems. Furthermore, most of the methods do not make full use of the image gradient information which leads to the loss of geometric structure information of the image. To solve these problems, we propose a gradient information distillation network in this paper. On the one hand, the advantages of fast and lightweight are maintained through information distillation. On the other hand, the SR performance is improved by gradient information. Our network has two branches named gradient information distillation branch (GIDB) and image information distillation branch. To combine features in both branches, we also introduce a residual feature transfer mechanism (RFT). Under the function of GIDB and RFT, our network can retain the rich geometric structure information which can make the edge details of the reconstructed image sharper. The experimental results show that our method is superior to the existing methods while well limits the parameters, computation and running time of the model. It provides the possibility for real-time image processing and mobile applications.
引用
收藏
页码:333 / 344
页数:11
相关论文
共 50 条
  • [41] Single-image super-resolution via local learning
    Yi Tang
    Pingkun Yan
    Yuan Yuan
    Xuelong Li
    International Journal of Machine Learning and Cybernetics, 2011, 2 : 15 - 23
  • [42] An adaptive regression based single-image super-resolution
    Hou, Mingzheng
    Feng, Ziliang
    Wang, Haobo
    Shen, Zhiwei
    Li, Sheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (20) : 28231 - 28248
  • [43] LOCAL OPERATOR ESTIMATION FOR SINGLE-IMAGE SUPER-RESOLUTION
    Tang, Yi
    Chen, Hong
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2015, : 39 - 44
  • [44] Improving Single-Image Super-Resolution with Dilated Attention
    Zhang, Xinyu
    Cheng, Boyuan
    Yang, Xiaosong
    Xiao, Zhidong
    Zhang, Jianjun
    You, Lihua
    ELECTRONICS, 2024, 13 (12)
  • [45] Collaborative Representation Cascade for Single-Image Super-Resolution
    Zhang, Yongbing
    Zhang, Yulun
    Zhang, Jian
    Xu, Dong
    Fu, Yun
    Wang, Yisen
    Ji, Xiangyang
    Dai, Qionghai
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (05): : 845 - 860
  • [46] FAST SINGLE-IMAGE SUPER-RESOLUTION WITH FILTER SELECTION
    Salvador, Jordi
    Perez-Pellitero, Eduardo
    Kochale, Axel
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 640 - 644
  • [47] Lightweight Asymmetric Convolutional Distillation Network for Single Image Super-Resolution
    Wu, Jun
    Wang, Yuxi
    Zhang, Xuguang
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 733 - 737
  • [48] Lightweight hierarchical residual feature fusion network for single-image super-resolution
    Qin, Jiayi
    Liu, Feiqiang
    Liu, Kai
    Jeon, Gwanggil
    Yang, Xiaomin
    NEUROCOMPUTING, 2022, 478 : 104 - 123
  • [49] CASR: a context-aware residual network for single-image super-resolution
    Wu, Yirui
    Ji, Xiaozhong
    Ji, Wanting
    Tian, Yan
    Zhou, Helen
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (18): : 14533 - 14548
  • [50] Single-image super-resolution reconstruction using dark channel regularization network
    Di Zhang
    Jiazhong He
    Yun Zhao
    Huailing Zhang
    Signal, Image and Video Processing, 2021, 15 : 431 - 438