CASR: a context-aware residual network for single-image super-resolution

被引:11
|
作者
Wu, Yirui [1 ,2 ]
Ji, Xiaozhong [2 ]
Ji, Wanting [3 ]
Tian, Yan [4 ]
Zhou, Helen [5 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R China
[2] Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing, Peoples R China
[3] Massey Univ, Sch Nat & Computat Sci, Auckland, New Zealand
[4] Zhejiang Gongshang Univ, Hangzhou, Peoples R China
[5] Manukau Inst Technol, Sch Engn, Auckland, New Zealand
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 18期
基金
国家重点研发计划;
关键词
Context-aware residual network; Channel and spatial attention scheme; Inception block; Single-image super-resolution; COMPUTATION OFFLOADING METHOD; SERVICE RECOMMENDATION; CONVOLUTIONAL NETWORK; PRIVACY PRESERVATION;
D O I
10.1007/s00521-019-04609-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the significant power of deep learning architectures, researchers have made much progress on super-resolution in the past few years. However, due to low representational ability of feature maps extracted from nature scene images, directly applying deep learning architectures for super-resolution could result in poor visual effects. Essentially, unique characteristics like low-frequency information should be emphasized for better shape reconstruction, other than treated equally across different patches and channels. To ease this problem, we propose a lightweight context-aware deep residual network named as CASR network, which appropriately encodes channel and spatial attention information to construct context-aware feature map for single-image super-resolution. We firstly design a task-specified inception block with a novel structure of astrous filters and specially chosen kernel size to extract multi-level information from low-resolution images. Then, a Dual-Attention ResNet module is applied to capture context information by dually connecting spatial and channel attention schemes. With high representational ability of context-aware feature map, CASR can accurately and efficiently generate high-resolution images. Experiments on several popular datasets show the proposed method has achieved better visual improvements and superior efficiencies than most of the existing studies.
引用
收藏
页码:14533 / 14548
页数:16
相关论文
共 50 条
  • [1] CASR: a context-aware residual network for single-image super-resolution
    Yirui Wu
    Xiaozhong Ji
    Wanting Ji
    Yan Tian
    Helen Zhou
    Neural Computing and Applications, 2020, 32 : 14533 - 14548
  • [2] Context-Aware Residual Network with Promotion Gates for Single Image Super-Resolution
    Ji, Xiaozhong
    Wu, Yirui
    Lu, Tong
    MULTIMEDIA MODELING (MMM 2020), PT II, 2020, 11962 : 136 - 147
  • [3] Single-image super-resolution with multilevel residual attention network
    Qin, Ding
    Gu, Xiaodong
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (19): : 15615 - 15628
  • [4] Single-image super-resolution with multilevel residual attention network
    Ding Qin
    Xiaodong Gu
    Neural Computing and Applications, 2020, 32 : 15615 - 15628
  • [5] Residual Triplet Attention Network for Single-Image Super-Resolution
    Huang, Feng
    Wang, Zhifeng
    Wu, Jing
    Shen, Ying
    Chen, Liqiong
    ELECTRONICS, 2021, 10 (17)
  • [6] Dual-aware transformer network for single-image super-resolution
    Luo, Zhonghua
    Wang, Li
    Wang, Fengzhou
    Ruan, Yinglan
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (02)
  • [7] Single-Image Super-Resolution Reconstruction Aggregating Residual Attention Network
    Peng Yanfei
    Zhang Manting
    Zhang Pingjia
    Li Jian
    Gu Lirui
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (10)
  • [8] LEARNING CONTEXT-AWARE SPARSE REPRESENTATION FOR SINGLE IMAGE SUPER-RESOLUTION
    Yang, Min-Chun
    Wang, Chang-Heng
    Hu, Ting-Yao
    Wang, Yu-Chiang Frank
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1349 - 1352
  • [9] Lightweight hierarchical residual feature fusion network for single-image super-resolution
    Qin, Jiayi
    Liu, Feiqiang
    Liu, Kai
    Jeon, Gwanggil
    Yang, Xiaomin
    NEUROCOMPUTING, 2022, 478 : 104 - 123
  • [10] Deep artifact-free residual network for single-image super-resolution
    Nasrollahi, Hamdollah
    Farajzadeh, Kamran
    Hosseini, Vahid
    Zarezadeh, Esmaeil
    Abdollahzadeh, Milad
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (02) : 407 - 415