CASR: a context-aware residual network for single-image super-resolution

被引:11
|
作者
Wu, Yirui [1 ,2 ]
Ji, Xiaozhong [2 ]
Ji, Wanting [3 ]
Tian, Yan [4 ]
Zhou, Helen [5 ]
机构
[1] Hohai Univ, Coll Comp & Informat, Nanjing, Peoples R China
[2] Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing, Peoples R China
[3] Massey Univ, Sch Nat & Computat Sci, Auckland, New Zealand
[4] Zhejiang Gongshang Univ, Hangzhou, Peoples R China
[5] Manukau Inst Technol, Sch Engn, Auckland, New Zealand
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 18期
基金
国家重点研发计划;
关键词
Context-aware residual network; Channel and spatial attention scheme; Inception block; Single-image super-resolution; COMPUTATION OFFLOADING METHOD; SERVICE RECOMMENDATION; CONVOLUTIONAL NETWORK; PRIVACY PRESERVATION;
D O I
10.1007/s00521-019-04609-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the significant power of deep learning architectures, researchers have made much progress on super-resolution in the past few years. However, due to low representational ability of feature maps extracted from nature scene images, directly applying deep learning architectures for super-resolution could result in poor visual effects. Essentially, unique characteristics like low-frequency information should be emphasized for better shape reconstruction, other than treated equally across different patches and channels. To ease this problem, we propose a lightweight context-aware deep residual network named as CASR network, which appropriately encodes channel and spatial attention information to construct context-aware feature map for single-image super-resolution. We firstly design a task-specified inception block with a novel structure of astrous filters and specially chosen kernel size to extract multi-level information from low-resolution images. Then, a Dual-Attention ResNet module is applied to capture context information by dually connecting spatial and channel attention schemes. With high representational ability of context-aware feature map, CASR can accurately and efficiently generate high-resolution images. Experiments on several popular datasets show the proposed method has achieved better visual improvements and superior efficiencies than most of the existing studies.
引用
收藏
页码:14533 / 14548
页数:16
相关论文
共 50 条
  • [31] Single-image super-resolution reconstruction via generative adversarial network
    Ju, Chunwu
    Su, Xiuqin
    Yang, Haoyuan
    Ning, Hailong
    9TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTOELECTRONIC MATERIALS AND DEVICES FOR SENSING AND IMAGING, 2019, 10843
  • [32] Lightweight interactive feature inference network for single-image super-resolution
    Wang, Li
    Li, Xing
    Tian, Wei
    Peng, Jianhua
    Chen, Rui
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [33] FPPN: fast pixel purification network for single-image super-resolution
    Bin Meng
    Xiaomin Yang
    Rongzhu Zhang
    Kai Liu
    Multimedia Systems, 2022, 28 (1) : 281 - 293
  • [34] MULTI-SCALE DENSE NETWORK FOR SINGLE-IMAGE SUPER-RESOLUTION
    Chang, Chia-Yang
    Chien, Shao-Yi
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1742 - 1746
  • [35] FPPN: fast pixel purification network for single-image super-resolution
    Meng, Bin
    Yang, Xiaomin
    Zhang, Rongzhu
    Liu, Kai
    MULTIMEDIA SYSTEMS, 2022, 28 (01) : 281 - 293
  • [36] Shear Let Transform Residual Learning Approach for Single-Image Super-Resolution
    Ismail, Israa
    Eltaweel, Ghada
    Eltoukhy, Mohamed Meselhy
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (02): : 3193 - 3209
  • [37] Context-aware single image super-resolution using sparse representation and cross-scale similarity
    Lu, Jian
    Sun, Yi
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2015, 32 : 40 - 53
  • [38] CONTEXT-AWARE SINGLE IMAGE SUPER-RESOLUTION USING LOCALITY-CONSTRAINED GROUP SPARSE REPRESENTATION
    Tsai, Chih-Yun
    Huang, De-An
    Yang, Min-Chun
    Kang, Li-Wei
    Wang, Yu-Chiang Frank
    2012 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2012,
  • [39] Adaptive deep residual network for single image super-resolution
    Shuai Liu
    Ruipeng Gang
    Chenghua Li
    Ruixia Song
    ComputationalVisualMedia, 2019, 5 (04) : 391 - 401
  • [40] Efficient residual attention network for single image super-resolution
    Fangwei Hao
    Taiping Zhang
    Linchang Zhao
    Yuanyan Tang
    Applied Intelligence, 2022, 52 : 652 - 661