On Anisotropic Regularity Criteria for the Solutions to 3D Navier–Stokes Equations

被引:0
|
作者
Patrick Penel
Milan Pokorný
机构
[1] Université du Sud,Mathématique et labo. SNC
[2] Toulon-Var,undefined
[3] Mathematical Institute of Charles University,undefined
来源
Journal of Mathematical Fluid Mechanics | 2011年 / 13卷
关键词
Primary 35Q30; Secondary 76D05; Incompressible Navier–Stokes equations; regularity of solution; regularity criteria;
D O I
暂无
中图分类号
学科分类号
摘要
In this short note we consider the 3D Navier–Stokes equations in the whole space, for an incompressible fluid. We provide sufficient conditions for the regularity of strong solutions in terms of certain components of the velocity gradient. Based on the recent results from Kukavica (J Math Phys 48(6):065203, 2007) we show these conditions as anisotropic regularity criteria which partially interpolate results from Kukavica (J Math Phys 48(6):065203, 2007) and older results of similar type from Penel and Pokorný (Appl Math 49(5):483–493, 2004).
引用
收藏
页码:341 / 353
页数:12
相关论文
共 50 条
  • [21] ON THE REGULARITY CRITERIA OF THE 3D NAVIER-STOKES EQUATIONS IN CRITICAL SPACES
    Dong Boqing
    Gala, Sadek
    Chen Zhimin
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (02) : 591 - 600
  • [22] Local regularity criteria of the 3D Navier-Stokes and related equations
    Wang, Yanqing
    Wu, Gang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 140 : 130 - 144
  • [23] ε-Regularity criteria in anisotropic Lebesgue spaces and Leray's self-similar solutions to the 3D Navier-Stokes equations
    Wang, Yanqing
    Wu, Gang
    Zhou, Daoguo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [24] On the regularity and convergence of solutions to the 3D Navier-Stokes-Voigt equations
    Cung The Anh
    Pham Thi Trang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (04) : 601 - 615
  • [25] Regularity of weak solutions to 3D incompressible Navier-Stokes equations
    Han, Pigong
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (01) : 195 - 204
  • [26] Enstropy generation and regularity of solutions to the 3D Navier-Stokes equations
    Doering, Charles R.
    Lu, Lu
    IUTAM SYMPOSIUM ON COMPUTATIONAL PHYSICS AND NEW PERSPECTIVES IN TURBULENCE, 2008, 4 : 47 - 48
  • [27] On the Regularity Conditions of Suitable Weak Solutions of the 3D Navier–Stokes Equations
    Dongho Chae
    Journal of Mathematical Fluid Mechanics, 2010, 12 : 171 - 180
  • [28] IMPROVEMENT OF SOME ANISOTROPIC REGULARITY CRITERIA FOR THE NAVIER STOKES EQUATIONS
    Penel, Patrick
    Pokorny, Milan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (05): : 1401 - 1407
  • [29] Some Interior Regularity Criteria Involving Two Components for Weak Solutions to the 3D Navier–Stokes Equations
    Yanqing Wang
    Gang Wu
    Daoguo Zhou
    Journal of Mathematical Fluid Mechanics, 2018, 20 : 2147 - 2159
  • [30] Two regularity criteria for 3D Navier-Stokes equations in a bounded domain
    Jishan Fan
    Fucai Li
    Gen Nakamura
    Frontiers of Mathematics in China, 2017, 12 : 359 - 366