On the Regularity Conditions of Suitable Weak Solutions of the 3D Navier–Stokes Equations

被引:1
|
作者
Dongho Chae
机构
[1] Sunkyunkwan University,Department of Mathematics
关键词
35Q30; 76D03; 76D05; Navier–Stokes equations; weak solutions; regularity criterion;
D O I
暂无
中图分类号
学科分类号
摘要
Let v and ω be the velocity and the vorticity of the a suitable weak solution of the 3D Navier–Stokes equations in a space-time domain containing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_{0}=(x_{0}, t_{0})$$\end{document}, and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{z_{0},r}= B_{x_{0},r} \times (t_{0} -r^{2}, t_{0})$$\end{document} be a parabolic cylinder in the domain. We show that if either \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu \times \frac{\omega}{|\omega|} \in L^{\gamma,\alpha}_{x,t}(Q_{z_{0},r})$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{\gamma} + \frac{2}{\alpha} \leq 1, {\rm or} \omega \times \frac{\nu} {|\nu|} \in L^{\gamma,\alpha}_{x,t} (Q_{z_{0},r})$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{\gamma} + \frac{2}{\alpha} \leq 2$$\end{document}, where Lγ, αx,t denotes the Serrin type of class, then z0 is a regular point for ν. This refines previous local regularity criteria for the suitable weak solutions.
引用
收藏
页码:171 / 180
页数:9
相关论文
共 50 条