Let v and ω be the velocity and the vorticity of the a suitable weak solution of the 3D Navier–Stokes equations in a space-time domain containing \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$z_{0}=(x_{0}, t_{0})$$\end{document}, and let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q_{z_{0},r}= B_{x_{0},r} \times (t_{0} -r^{2}, t_{0})$$\end{document} be a parabolic cylinder in the domain. We show that if either \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu
\times \frac{\omega}{|\omega|} \in
L^{\gamma,\alpha}_{x,t}(Q_{z_{0},r})$$\end{document} with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{3}{\gamma} + \frac{2}{\alpha} \leq 1, {\rm or} \omega \times
\frac{\nu} {|\nu|} \in L^{\gamma,\alpha}_{x,t} (Q_{z_{0},r})$$\end{document} with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{3}{\gamma} + \frac{2}{\alpha} \leq 2$$\end{document}, where Lγ, αx,t denotes the Serrin type of class, then z0 is a regular point for ν. This refines previous local regularity criteria for the suitable weak solutions.