On an Anisotropic Eigenvalue Problem

被引:0
|
作者
Zhenhai Liu
Nikolaos S. Papageorgiou
机构
[1] Yulin Normal University,Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing
[2] Guangxi Minzu University,Guangxi Key Laboratory of Universities Optimization Control and Engineering Calculation, College of Mathematics and Physics
[3] National Technical University,Department of Mathematics
来源
Results in Mathematics | 2023年 / 78卷
关键词
Variable Lebesgue and Sobolev spaces; truncations and comparisons; positive solutions; minimal solutions; bifurcation-type theorem; 35J10; 35J70;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a nonlinear eigenvalue problem driven by the anisotropic (p, q)-Laplacian. Using variational tools and truncation and comparison techniques, we show the existence of a continuous spectrum (a bifurcation-type theorem). We also show the existence of a minimal positive solution and determine the properties of the minimal solution map.
引用
收藏
相关论文
共 50 条
  • [21] Some Remarks on an Eigenvalue Problem for an Anisotropic Elliptic Equation with Indefinite Weight
    Nguyen Thanh Chung
    FILOMAT, 2019, 33 (16) : 5061 - 5075
  • [22] Virtual element method for the Helmholtz transmission eigenvalue problem of anisotropic media
    Meng, Jian
    Mei, Liquan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (08): : 1493 - 1529
  • [23] THE INTERIOR TRANSMISSION EIGENVALUE PROBLEM FOR AN ANISOTROPIC MEDIUM BY A PARTIALLY COATED BOUNDARY
    向建立
    严国政
    ActaMathematicaScientia, 2024, 44 (01) : 339 - 354
  • [24] The interior transmission eigenvalue problem for an anisotropic medium by a partially coated boundary
    Xiang, Jianli
    Yan, Guozheng
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (01) : 339 - 354
  • [25] The interior transmission eigenvalue problem for an anisotropic medium by a partially coated boundary
    Jianli Xiang
    Guozheng Yan
    Acta Mathematica Scientia, 2024, 44 : 339 - 354
  • [26] A mixed element scheme for the Helmholtz transmission eigenvalue problem for anisotropic media
    Liu, Qing
    Li, Tiexiang
    Zhang, Shuo
    INVERSE PROBLEMS, 2023, 39 (05)
  • [27] EIGENVALUE PROBLEM
    WASSERSTROM, E
    SIAM REVIEW, 1975, 17 (03) : 567 - 568
  • [28] The ∞-Eigenvalue Problem
    Petri Juutinen
    Peter Lindqvist
    Juan J. Manfredi
    Archive for Rational Mechanics and Analysis, 1999, 148 : 89 - 105
  • [29] EIGENVALUE PROBLEM
    LOSSERS, OP
    SIAM REVIEW, 1976, 18 (03) : 502 - 505
  • [30] The ∞-eigenvalue problem
    Juutinen, P
    Lindqvist, P
    Manfredi, JJ
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 148 (02) : 89 - 105