Approximation for Jakimovski–Leviatan–Pǎltǎnea operators

被引:0
|
作者
Verma D.K. [1 ]
Gupta V. [2 ]
机构
[1] Department of Mathematics, Ramjas College, University of Delhi, New Delhi
[2] Department of Mathematics, Netaji Subhash Institute of Technology, Sector 3 Dwarka, New Delhi
关键词
Apple polynomials; Modulus of continuity; Phillips operators; Szász operators; Voronovskaja type asymptotic formula;
D O I
10.1007/s11565-015-0234-7
中图分类号
学科分类号
摘要
In the present paper, we deal with the operators (Formula Presented.). First we estimates moments of these operators. We estimate some approximation properties and asymptotic formula for these operators. © 2015, Università degli Studi di Ferrara.
引用
收藏
页码:367 / 380
页数:13
相关论文
共 50 条
  • [31] On the Approximation by Bivariate Szasz-Jakimovski-Leviatan-Type Operators of Unbounded Sequences of Positive Numbers
    Alotaibi, Abdullah
    [J]. MATHEMATICS, 2023, 11 (04)
  • [32] Approximation results for Beta Jakimovski-Leviatan type operators via q-analogue
    Nasiruzzaman, Md.
    Tom, Mohammed A. O.
    Serra-Capizzano, Stefano
    Rao, Nadeem
    Ayman-Mursaleen, Mohammad
    [J]. FILOMAT, 2023, 37 (24) : 8389 - 8404
  • [33] On Voronovskaya Type Result for Generalized Jakimovski-Leviatan Operators
    Yilmaz, Mine Menekse
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [34] Jakimovski-Leviatan operators of Durrmeyer type involving Appell polynomials
    Gupta, Pooja
    Agrawal, Purshottam Narain
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) : 1457 - 1470
  • [35] A sequence of Appell polynomials and the associated Jakimovski-Leviatan operators
    Acu, Ana-Maria
    Buscu, Ioan Cristian
    Rasa, Ioan
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [36] Approximation by q-analogue of Jakimovski-Leviatan operators involving q-Appell polynomials
    Mursaleen, M.
    Ansari, Khursheed J.
    Nasiruzzaman, Md
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A4): : 891 - 900
  • [37] Note On Jakimovski-Leviatan Operators Preserving e-x
    Acar, Ecem
    Izgi, Aydin
    Serenbay, Sevilay Kirci
    [J]. APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2019, 4 (02) : 543 - 550
  • [38] Rates of convergence for Jakimovski–Leviatan operators in terms of the Ditzian–Totik modulus
    Ana-Maria Acu
    José A. Adell
    Ioan Raşa
    [J]. Banach Journal of Mathematical Analysis, 2023, 17
  • [39] Approximation and error estimation by modified Păltănea operators associating Gould–Hopper polynomials
    Khursheed J. Ansari
    Shagufta Rahman
    M. Mursaleen
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 2827 - 2851
  • [40] Jakimovski-Leviatan operators of Kantorovich type involving multiple Appell polynomials
    Gupta, Pooja
    Acu, Ana Maria
    Agrawal, Purshottam Narain
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (01) : 73 - 82