Global Attractor for a Nonlinear Oscillator Coupled to the Klein–Gordon Field

被引:0
|
作者
Alexander Komech
Andrew Komech
机构
[1] Faculty of Mathematics,Mathematics Department
[2] Texas A&M University,On leave from Department of Mechanics and Mathematics
[3] Moscow State University,undefined
关键词
Cauchy Problem; Solitary Wave; Global Attractor; Gordon Equation; Nonlinear Wave Equation;
D O I
暂无
中图分类号
学科分类号
摘要
The long-time asymptotics is analyzed for all finite energy solutions to a model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{U}(1)$$\end{document}-invariant nonlinear Klein–Gordon equation in one dimension, with the nonlinearity concentrated at a single point: each finite energy solution converges as t→ ± ∞ to the set of all “nonlinear eigenfunctions” of the form ψ(x)e−iω t. The global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive radiation.
引用
收藏
页码:105 / 142
页数:37
相关论文
共 50 条
  • [41] On the Supersymmetry of the Klein-Gordon Oscillator
    Junker, Georg
    SYMMETRY-BASEL, 2021, 13 (05):
  • [42] Global existence for coupled systems of nonlinear wave and Klein-Gordon equations in three space dimensions
    Katayama, Soichiro
    MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (1-2) : 487 - 513
  • [43] THE KLEIN-GORDON OSCILLATOR - COMMENT
    DVOEGLAZOV, VV
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1994, 107 (08): : 1413 - 1417
  • [44] Transport Equation for the Harmonic Crystal Coupled to a Klein–Gordon Field
    T.V. Dudnikova
    Russian Journal of Mathematical Physics, 2023, 30 : 501 - 521
  • [45] Caricature of Hydrodynamics for the Harmonic Crystal Coupled to a Klein–Gordon Field
    T.V. Dudnikova
    Russian Journal of Mathematical Physics, 2024, 31 (4) : 606 - 621
  • [46] The periodic solutions for a class of coupled nonlinear Klein-Gordon equations
    Liu, SK
    Fu, ZT
    Liu, SD
    Wang, ZG
    PHYSICS LETTERS A, 2004, 323 (5-6) : 415 - 420
  • [48] NUMERICAL TREATMENT OF COUPLED NONLINEAR HYPERBOLIC KLEIN-GORDON EQUATIONS
    Doha, E. H.
    Bhrawy, A. H.
    Baleanu, D.
    Abdelkawy, M. A.
    ROMANIAN JOURNAL OF PHYSICS, 2014, 59 (3-4): : 247 - 264
  • [49] Klein-Gordon oscillator in Kaluza-Klein theory
    Carvalho, Josevi
    Carvalho, Alexandre M. de M.
    Cavalcante, Everton
    Furtado, Claudio
    EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (07):
  • [50] On global attractor of 3D Klein-Gordon equation with several concentrated nonlinearities
    Kopylova, Elena
    Komech, Alexander
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2019, 16 (02) : 105 - 124