NUMERICAL TREATMENT OF COUPLED NONLINEAR HYPERBOLIC KLEIN-GORDON EQUATIONS

被引:0
|
作者
Doha, E. H. [1 ]
Bhrawy, A. H. [2 ,3 ]
Baleanu, D. [4 ,5 ,6 ]
Abdelkawy, M. A. [3 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[3] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf 62511, Egypt
[4] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia
[5] Cankaya Univ, Dept Math & Comp Sci, TR-06810 Ankara, Turkey
[6] Inst Space Sci, RO-077125 Magurele, Romania
来源
ROMANIAN JOURNAL OF PHYSICS | 2014年 / 59卷 / 3-4期
关键词
Nonlinear coupled hyperbolic Klein-Gordon equations; Nonlinear phenomena; Jacobi collocation method; Jacobi-Gauss-Lobatto quadrature; TRAVELING-WAVE SOLUTIONS; COLLOCATION METHOD; DIFFERENTIAL-EQUATIONS; INTEGRAL-EQUATIONS; SOLITONS; MODEL;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A semi-analytical solution based on a Jacobi-Gauss-Lobatto collocation (J-GL-C) method is proposed and developed for the numerical solution of the spatial variable for two nonlinear coupled Klein-Gordon (KG) partial differential equations. The general Jacobi-Gauss-Lobatto points are used as collocation nodes in this approach. The main characteristic behind the J-GL-C approach is that it reduces such problems to solve a system of ordinary differential equations (SODEs) in time. This system is solved by diagonally-implicit Runge-Kutta-Nystrom scheme. Numerical results show that the proposed algorithm is efficient, accurate, and compare favorably with the analytical solutions.
引用
收藏
页码:247 / 264
页数:18
相关论文
共 50 条
  • [1] Numerical solution of coupled nonlinear Klein-Gordon equations on unbounded domains
    Tai, Yinong
    Li, Hongwei
    Zhou, Zhaojie
    Jiang, Ziwen
    [J]. PHYSICAL REVIEW E, 2022, 106 (02)
  • [2] A Note on the Numerical Solution of Coupled Klein-Gordon Equations
    Yildirim, Ozgur
    Uzun, Meltem
    [J]. THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183
  • [3] Exact solutions of coupled nonlinear Klein-Gordon equations
    Yusufoglu, E.
    Bekir, A.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (11-12) : 1694 - 1700
  • [4] The nonlinear Klein-Gordon equation coupled with the Maxwell equations
    Benci, V
    Fortunato, D
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (09) : 6065 - 6072
  • [5] Optical solitons for nonlinear coupled Klein-Gordon equations
    Guner, O.
    Bekir, A.
    [J]. OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2015, 9 (3-4): : 332 - 343
  • [6] Soliton solutions of coupled nonlinear Klein-Gordon equations
    Alagesan, T
    Chung, Y
    Nakkeeran, K
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 21 (04) : 879 - 882
  • [7] Numerical analysis of nonlinear Klein-Gordon equations by a meshless
    Hou, Huanyang
    Li, Xiaolin
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 169
  • [8] The periodic solutions for a class of coupled nonlinear Klein-Gordon equations
    Liu, SK
    Fu, ZT
    Liu, SD
    Wang, ZG
    [J]. PHYSICS LETTERS A, 2004, 323 (5-6) : 415 - 420
  • [9] NONLINEAR BOUNDARY DISSIPATION FOR A COUPLED SYSTEM OF KLEIN-GORDON EQUATIONS
    Louredo, Aldo T.
    Milla Miranda, M.
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [10] WAVE AND KLEIN-GORDON EQUATIONS ON HYPERBOLIC SPACES
    Anker, Jean-Philippe
    Pierfelice, Vittoria
    [J]. ANALYSIS & PDE, 2014, 7 (04): : 953 - 995