Partial estimation of covariance matrices

被引:0
|
作者
Elizaveta Levina
Roman Vershynin
机构
[1] University of Michigan,Department of Statistics
[2] University of Michigan,Department of Mathematics
来源
关键词
62H12 (primary); 60B20 (secondary);
D O I
暂无
中图分类号
学科分类号
摘要
A classical approach to accurately estimating the covariance matrix Σ of a p-variate normal distribution is to draw a sample of size n > p and form a sample covariance matrix. However, many modern applications operate with much smaller sample sizes, thus calling for estimation guarantees in the regime \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \ll p}$$\end{document}. We show that a sample of size n = O(m log6p) is sufficient to accurately estimate in operator norm an arbitrary symmetric part of Σ consisting of m ≤ n nonzero entries per row. This follows from a general result on estimating Hadamard products M · Σ, where M is an arbitrary symmetric matrix.
引用
收藏
页码:405 / 419
页数:14
相关论文
共 50 条
  • [11] ESTIMATION OF DIAGONAL COVARIANCE MATRICES BY MINQUE
    BROWN, KG
    COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1977, 6 (05): : 471 - 484
  • [12] Regularized estimation of large covariance matrices
    Bickel, Peter J.
    Levina, Elizaveta
    ANNALS OF STATISTICS, 2008, 36 (01): : 199 - 227
  • [13] Estimation of Deviation for Random Covariance Matrices
    Tien-Cuong Dinh
    Duc-Viet Vu
    MICHIGAN MATHEMATICAL JOURNAL, 2019, 68 (03) : 597 - 620
  • [14] ROBUST ESTIMATION OF STRUCTURED COVARIANCE MATRICES
    WILLIAMS, DB
    JOHNSON, DH
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (09) : 2891 - 2906
  • [15] Modeling covariance matrices via partial autocorrelations
    Daniels, M. J.
    Pourahmadi, M.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (10) : 2352 - 2363
  • [16] FACTOR-ANALYSIS OF PARTIAL COVARIANCE MATRICES
    LEVIN, J
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 1987, 47 (03) : 617 - 619
  • [17] IMPROVEMENT ON THE ESTIMATION OF COVARIANCE MATRICES BY INCORPORATING CROSSCORRELATIONS
    KIRLIN, RL
    DU, W
    IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1991, 138 (05) : 479 - 482
  • [18] Efficient nonparametric estimation of Toeplitz covariance matrices
    Klockmann, K.
    Krivobokova, T.
    BIOMETRIKA, 2024, 111 (03) : 843 - 864
  • [19] Estimation of noise covariance matrices for periodic systems
    Simandl, Miroslav
    Dunik, Jindrich
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2011, 25 (10) : 928 - 942
  • [20] Estimation for the Linear Model With Uncertain Covariance Matrices
    Zachariah, Dave
    Shariati, Nafiseh
    Bengtsson, Mats
    Jansson, Magnus
    Chatterjee, Saikat
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (06) : 1525 - 1535