On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order

被引:0
|
作者
Roberto Amato
机构
[1] University of Messina,Department of Engineering
[2] Contrada Di Dio (S. Agata),undefined
来源
Czechoslovak Mathematical Journal | 2016年 / 66卷
关键词
nonlinear parabolic system; fractional differentiability; spatial derivative; weak solution; 35R11; 35K41;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with the problem of differentiability of the derivatives of order m + 1 of solutions to the “nonlinear basic systems” of the type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left( { - 1} \right)^m}\sum\limits_{\left| \alpha \right| = m} {{D^\alpha }{A^\alpha }\left( {{D^{\left( m \right)}}u} \right)} + \frac{{\partial u}}{{\partial t}} = 0\;in\;Q.$$\end{document} We are able to show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D^\alpha }u \in {L^2}\left( { - a,0,{H^\partial }\left( {B\left( \sigma \right),{\mathbb{R}^N}} \right)} \right),\;\left| \alpha \right| = m + 1,$$\end{document} for ϑ ∈ (0, 1/2) and this result suggests that more regularity is not expectable.
引用
收藏
页码:293 / 305
页数:12
相关论文
共 50 条