On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order

被引:0
|
作者
Roberto Amato
机构
[1] University of Messina,Department of Engineering
[2] Contrada Di Dio (S. Agata),undefined
来源
Czechoslovak Mathematical Journal | 2016年 / 66卷
关键词
nonlinear parabolic system; fractional differentiability; spatial derivative; weak solution; 35R11; 35K41;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with the problem of differentiability of the derivatives of order m + 1 of solutions to the “nonlinear basic systems” of the type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left( { - 1} \right)^m}\sum\limits_{\left| \alpha \right| = m} {{D^\alpha }{A^\alpha }\left( {{D^{\left( m \right)}}u} \right)} + \frac{{\partial u}}{{\partial t}} = 0\;in\;Q.$$\end{document} We are able to show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D^\alpha }u \in {L^2}\left( { - a,0,{H^\partial }\left( {B\left( \sigma \right),{\mathbb{R}^N}} \right)} \right),\;\left| \alpha \right| = m + 1,$$\end{document} for ϑ ∈ (0, 1/2) and this result suggests that more regularity is not expectable.
引用
收藏
页码:293 / 305
页数:12
相关论文
共 50 条
  • [31] Differentiability with respect to parameters of weak solutions of linear parabolic equations
    Singler, John R.
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (3-4) : 422 - 430
  • [32] Optimal fractional differentiability for nonlinear parabolic measure data problems
    Byun, Sun-Sig
    Cho, Namkyeong
    Song, Kyeong
    APPLIED MATHEMATICS LETTERS, 2021, 112
  • [33] On the regularity of weak solutions to parabolic systems in two spatial dimensions
    John, O
    Stara, J
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (7-8) : 1159 - 1170
  • [34] Lp Estimates for Weak Solutions to Nonlinear Degenerate Parabolic Systems
    Wei, Na
    Ge, Xiangyu
    Wu, Yonghong
    Zhao, Leina
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2017, 2017
  • [35] Differentiability of Solutions of Nonlinear Elliptic Systems of Order 2m
    Floridia, Giuseppe
    Ragusa, Maria Alessandra
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 278 - +
  • [36] Higher Order Fractional Differentiability for the Stationary Stokes System
    Ling Wei Ma
    Zhen Qiu Zhang
    Qi Xiong
    Acta Mathematica Sinica, English Series, 2023, 39 : 13 - 29
  • [37] Higher differentiability for the solutions of nonlinear elliptic systems with lower-order terms and L1,θ-data
    G. R. Cirmi
    S. Leonardi
    Annali di Matematica Pura ed Applicata, 2014, 193 : 115 - 131
  • [38] Higher Order Fractional Differentiability for the Stationary Stokes System
    Ma, Ling Wei
    Zhang, Zhen Qiu
    Xiong, Qi
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (01) : 13 - 29
  • [39] Higher Order Fractional Differentiability for the Stationary Stokes System
    Ling Wei MA
    Zhen Qiu ZHANG
    Qi XIONG
    Acta Mathematica Sinica,English Series, 2023, (01) : 13 - 29
  • [40] Higher differentiability for the solutions of nonlinear elliptic systems with lower-order terms and L1,θ-data
    Cirmi, G. R.
    Leonardi, S.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (01) : 115 - 131