Long-time relaxation processes in the nonlinear Schrödinger equation

被引:0
|
作者
Yu. N. Ovchinnikov
I. M. Sigal
机构
[1] Max-Planck Institute for Physics of Complex System,Landau Institute for Theoretical Physics
[2] Russian Academy of Sciences,undefined
[3] University of Toronto,undefined
[4] University of Notre Dame,undefined
关键词
Vortex; Soliton; Theoretical Physic; Topological Charge; Nonlinear Wave Equation;
D O I
暂无
中图分类号
学科分类号
摘要
The nonlinear Schrödinger equation, known in low-temperature physics as the Gross-Pitaevskii equation, has a large family of excitations of different kinds. They include sound excitations, vortices, and solitons. The dynamics of vortices strictly depends on the separation between them. For large separations, some kind of adiabatic approximation can be used. We consider the case where an adiabatic approximation can be used (large separation between vortices) and the opposite case of a decay of the initial state, which is close to the double vortex solution. In the last problem, no adiabatic parameter exists (the interaction is strong). Nevertheless, a small numerical parameter arises in the problem of the decay rate, connected with an existence of a large centrifugal potential, which leads to a small value of the increment. The properties of the nonlinear wave equation are briefly considered in the Appendix A.
引用
收藏
页码:469 / 478
页数:9
相关论文
共 50 条
  • [31] Nonlinear Coherent States and Ehrenfest Time for Schrödinger Equation
    Rémi Carles
    Clotilde Fermanian-Kammerer
    Communications in Mathematical Physics, 2011, 301 : 443 - 472
  • [32] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [33] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [34] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [35] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [36] Long Time Energy Transfer in the Random Schrödinger Equation
    Tomasz Komorowski
    Lenya Ryzhik
    Communications in Mathematical Physics, 2014, 329 : 1131 - 1170
  • [37] On long-time decay for magnetic Schrödinger and Klein-Gordon equations
    E. A. Kopylova
    Proceedings of the Steklov Institute of Mathematics, 2012, 278 : 121 - 129
  • [38] Finite time blowup for the nonlinear Schrödinger equation with a delta potential
    Hauser, Brandon
    Holmes, John
    O'Keefe, Eoghan
    Raynor, Sarah
    Yu, Chuanyang
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (04): : 591 - 604
  • [39] Exact solutions for the quintic nonlinear Schrödinger equation with time and space
    Si-Liu Xu
    Nikola Petrović
    Milivoj R. Belić
    Wenwu Deng
    Nonlinear Dynamics, 2016, 84 : 251 - 259
  • [40] A NONLINEAR SCHR?DINGER EQUATION WITH COULOMB POTENTIAL
    苗长兴
    张军勇
    郑继强
    Acta Mathematica Scientia, 2022, 42 (06) : 2230 - 2256