Finite time blowup for the nonlinear Schrödinger equation with a delta potential

被引:0
|
作者
Hauser, Brandon [1 ]
Holmes, John [1 ]
O'Keefe, Eoghan [1 ]
Raynor, Sarah [1 ]
Yu, Chuanyang [1 ]
机构
[1] Wake Forest Univ, Dept Math & Stat, Winston Salem, NC 27109 USA
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2023年 / 16卷 / 04期
关键词
well-posedness; initial value problem; Schrodinger equation; NLS; Cauchy problem; Sobolev spaces;
D O I
10.2140/involve.2023.16.591
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Cauchy problem for the nonlinear Schrodinger equation with a delta potential, which can be written as iut + Au + (|u|2 sigma + c8)u = 0. We show that under certain conditions, the L infinity norm of the solution tends to infinity in finite time. In order to prove this, we study the associated Lagrangian and Hamil-tonian, and derive an estimate of the associated variance. We also derive several con-servation laws which a classical solution of the Cauchy problem must also satisfy.
引用
收藏
页码:591 / 604
页数:16
相关论文
共 50 条
  • [1] Nonlinear Schr?dinger equation with a Dirac delta potential:finite difference method
    程彬
    陈亚铭
    徐传福
    李大力
    邓小刚
    Communications in Theoretical Physics, 2020, 72 (02) : 3 - 8
  • [2] Threshold for Blowup and Stability for Nonlinear Schrödinger Equation with Rotation
    Nyla Basharat
    Hichem Hajaiej
    Yi Hu
    Shijun Zheng
    Annales Henri Poincaré, 2023, 24 : 1377 - 1416
  • [3] Instability of standing waves for nonlinear Schrödinger equation with delta potential
    Masahito Ohta
    São Paulo Journal of Mathematical Sciences, 2019, 13 : 465 - 474
  • [4] A NONLINEAR SCHR?DINGER EQUATION WITH COULOMB POTENTIAL
    苗长兴
    张军勇
    郑继强
    Acta Mathematica Scientia, 2022, 42 (06) : 2230 - 2256
  • [5] A nonlinear Schrödinger equation with Coulomb potential
    Changxing Miao
    Junyong Zhang
    Jiqiang Zheng
    Acta Mathematica Scientia, 2022, 42 : 2230 - 2256
  • [6] On a nonlinear Schrödinger equation with periodic potential
    Thomas Bartsch
    Yanheng Ding
    Mathematische Annalen, 1999, 313 : 15 - 37
  • [7] Blowup on an Arbitrary Compact Set for a Schrödinger Equation with Nonlinear Source Term
    Thierry Cazenave
    Zheng Han
    Yvan Martel
    Journal of Dynamics and Differential Equations, 2021, 33 : 941 - 960
  • [8] Accurate and efficient numerical methods for the nonlinear Schrödinger equation with Dirac delta potential
    Xuanxuan Zhou
    Yongyong Cai
    Xingdong Tang
    Guixiang Xu
    Calcolo, 2023, 60
  • [9] Blowup for biharmonic Schrödinger equation with critical nonlinearity
    Thanh Viet Phan
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [10] Blowup and scattering criteria above the threshold for the focusing inhomogeneous nonlinear Schrödinger equation
    Luccas Campos
    Mykael Cardoso
    Nonlinear Differential Equations and Applications NoDEA, 2021, 28