Finite time blowup for the nonlinear Schrödinger equation with a delta potential

被引:0
|
作者
Hauser, Brandon [1 ]
Holmes, John [1 ]
O'Keefe, Eoghan [1 ]
Raynor, Sarah [1 ]
Yu, Chuanyang [1 ]
机构
[1] Wake Forest Univ, Dept Math & Stat, Winston Salem, NC 27109 USA
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2023年 / 16卷 / 04期
关键词
well-posedness; initial value problem; Schrodinger equation; NLS; Cauchy problem; Sobolev spaces;
D O I
10.2140/involve.2023.16.591
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Cauchy problem for the nonlinear Schrodinger equation with a delta potential, which can be written as iut + Au + (|u|2 sigma + c8)u = 0. We show that under certain conditions, the L infinity norm of the solution tends to infinity in finite time. In order to prove this, we study the associated Lagrangian and Hamil-tonian, and derive an estimate of the associated variance. We also derive several con-servation laws which a classical solution of the Cauchy problem must also satisfy.
引用
收藏
页码:591 / 604
页数:16
相关论文
共 50 条
  • [21] Nonlinear Coherent States and Ehrenfest Time for Schrödinger Equation
    Rémi Carles
    Clotilde Fermanian-Kammerer
    Communications in Mathematical Physics, 2011, 301 : 443 - 472
  • [22] Long time stability for the derivative nonlinear Schrödinger equation
    Liu, Jianjun
    Xiang, Duohui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (02)
  • [23] A NONCONFORMING QUADRILATERAL FINITE ELEMENT APPROXIMATION TO NONLINEAR SCHRDINGER EQUATION
    石东洋
    廖歆
    王乐乐
    Acta Mathematica Scientia, 2017, 37 (03) : 584 - 592
  • [24] Existence of solutions to the nonlinear Schrödinger equation on locally finite graphs
    Zidong Qiu
    Yang Liu
    Archiv der Mathematik, 2023, 120 : 403 - 416
  • [25] Conservative finite difference schemes for the chiral nonlinear Schrödinger equation
    Mohammad S Ismail
    Khalil S Al-Basyouni
    Ayhan Aydin
    Boundary Value Problems, 2015
  • [26] Finite difference scheme for a higher order nonlinear Schrödinger equation
    Marcelo M. Cavalcanti
    Wellington J. Corrêa
    Mauricio A. Sepúlveda C.
    Rodrigo Véjar-Asem
    Calcolo, 2019, 56
  • [27] Finite dimensional global attractor for a fractional nonlinear Schrödinger equation
    Olivier Goubet
    Ezzeddine Zahrouni
    Nonlinear Differential Equations and Applications NoDEA, 2017, 24
  • [28] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [29] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [30] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40