Quadratic derivative nonlinear Schrödinger equations in two space dimensions

被引:0
|
作者
Fernando Bernal-Vílchis
Nakao Hayashi
Pavel I. Naumkin
机构
[1] UNAM Campus Morelia,Instituto de Matemáticas
[2] Osaka University,Department of Mathematics, Graduate School of Science
关键词
Primary 35Q35; Nonlinear Schrödinger equations; Global existence; Quadratic nonlinearities; Two spatial dimensions;
D O I
暂无
中图分类号
学科分类号
摘要
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$$\end{document}where the quadratic nonlinearity has the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda \in \mathbf{C}}$$\end{document}. We prove that if the initial data \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_{0}\in \mathbf{H}^{6}\cap \mathbf{H}^{3,3}}$$\end{document} satisfy smallness conditions in the weighted Sobolev norm, then the solution of the Cauchy problem (0.1) exists globally in time. Furthermore we prove the existence of the usual scattering states. The proof depends on the energy type estimates, smoothing property by Doi, and method of normal forms by Shatah.
引用
收藏
页码:329 / 355
页数:26
相关论文
共 50 条
  • [1] Quadratic derivative nonlinear Schrodinger equations in two space dimensions
    Bernal-Vilchis, Fernando
    Hayashi, Nakao
    Naumkin, Pavel I.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (03): : 329 - 355
  • [2] On a class of nonlinear Schrödinger equations with nonnegative potentials in two space dimensions
    Jian Zhang
    Ji Shu
    Mathematical Notes, 2012, 91 : 487 - 492
  • [3] Null Structure in a System of Quadratic Derivative Nonlinear Schrödinger Equations
    Masahiro Ikeda
    Soichiro Katayama
    Hideaki Sunagawa
    Annales Henri Poincaré, 2015, 16 : 535 - 567
  • [4] Discrete Derivative Nonlinear Schrödinger Equations
    Hennig, Dirk
    Cuevas-Maraver, Jesus
    MATHEMATICS, 2025, 13 (01)
  • [5] On a Hierarchy of Vector Derivative Nonlinear Schrödinger Equations
    Smirnov, Aleksandr O.
    Frolov, Eugene A.
    Dmitrieva, Lada L.
    SYMMETRY-BASEL, 2024, 16 (01):
  • [6] Structural Resolvent Estimates and Derivative Nonlinear Schrödinger Equations
    Michael Ruzhansky
    Mitsuru Sugimoto
    Communications in Mathematical Physics, 2012, 314 : 281 - 304
  • [7] Rogue Waves in the Generalized Derivative Nonlinear Schrödinger Equations
    Bo Yang
    Junchao Chen
    Jianke Yang
    Journal of Nonlinear Science, 2020, 30 : 3027 - 3056
  • [8] Solutions and connections of nonlocal derivative nonlinear Schrödinger equations
    Ying Shi
    Shou-Feng Shen
    Song-Lin Zhao
    Nonlinear Dynamics, 2019, 95 : 1257 - 1267
  • [9] GLOBAL WEAK SOLUTION TO THE NONLINEAR SCHRDINGER EQUATIONS WITH DERIVATIVE
    Qiaoxin Li
    AnnalsofAppliedMathematics, 2015, 31 (02) : 165 - 174
  • [10] Well-Posedness for a System of Quadratic Derivative Nonlinear Schrödinger Equations with Radial Initial Data
    Hiroyuki Hirayama
    Shinya Kinoshita
    Mamoru Okamoto
    Annales Henri Poincaré, 2020, 21 : 2611 - 2636