Decoding the protein–ligand interactions using parallel graph neural networks

被引:0
|
作者
Carter Knutson
Mridula Bontha
Jenna A. Bilbrey
Neeraj Kumar
机构
[1] Pacific Northwest National Laboratory,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Protein–ligand interactions (PLIs) are essential for biochemical functionality and their identification is crucial for estimating biophysical properties for rational therapeutic design. Currently, experimental characterization of these properties is the most accurate method, however, this is very time-consuming and labor-intensive. A number of computational methods have been developed in this context but most of the existing PLI prediction heavily depends on 2D protein sequence data. Here, we present a novel parallel graph neural network (GNN) to integrate knowledge representation and reasoning for PLI prediction to perform deep learning guided by expert knowledge and informed by 3D structural data. We develop two distinct GNN architectures: GNNF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{F}}$$\end{document} is the base implementation that employs distinct featurization to enhance domain-awareness, while GNNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{P}}$$\end{document} is a novel implementation that can predict with no prior knowledge of the intermolecular interactions. The comprehensive evaluation demonstrated that GNN can successfully capture the binary interactions between ligand and protein’s 3D structure with 0.979 test accuracy for GNNF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{F}}$$\end{document} and 0.958 for GNNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{P}}$$\end{document} for predicting activity of a protein–ligand complex. These models are further adapted for regression tasks to predict experimental binding affinities and pIC50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {pIC}_{\mathrm{50}}$$\end{document} crucial for compound’s potency and efficacy. We achieve a Pearson correlation coefficient of 0.66 and 0.65 on experimental affinity and 0.50 and 0.51 on pIC50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {pIC}_{\mathrm{50}}$$\end{document} with GNNF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{F}}$$\end{document} and GNNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{P}}$$\end{document}, respectively, outperforming similar 2D sequence based models. Our method can serve as an interpretable and explainable artificial intelligence (AI) tool for predicted activity, potency, and biophysical properties of lead candidates. To this end, we show the utility of GNNP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {GNN}_{\mathrm{P}}$$\end{document} on SARS-Cov-2 protein targets by screening a large compound library and comparing the prediction with the experimentally measured data.
引用
下载
收藏
相关论文
共 50 条
  • [21] Multi-Semantic Decoding of Visual Perception with Graph Neural Networks
    Li, Rong
    Li, Jiyi
    Wang, Chong
    Liu, Haoxiang
    Liu, Tao
    Wang, Xuyang
    Zou, Ting
    Huang, Wei
    Yan, Hongmei
    Chen, Huafu
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2024, 34 (04)
  • [22] GRAPH NEURAL NETWORKS FOR PREDICTING PROTEIN FUNCTIONS
    Ioannidis, Vassilis N.
    Marques, Antonio G.
    Giannakis, Georgios B.
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 221 - 225
  • [23] Decoding Color Visual Working Memory from EEG Signals Using Graph Convolutional Neural Networks
    Che, Xiaowei
    Zheng, Yuanjie
    Chen, Xin
    Song, Sutao
    Li, Shouxin
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2022, 32 (02)
  • [24] Proximity Graph Networks: Predicting Ligand Affinity with Message Passing Neural Networks
    Gale-Day, Zachary J.
    Shub, Laura
    Chuang, Kangway V.
    Keiser, Michael J.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (14) : 5439 - 5450
  • [25] Scalable Data Parallel Distributed Training for Graph Neural Networks
    Koyama, Sohei
    Tatebe, Osamu
    2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2022), 2022, : 699 - 707
  • [26] NPI-GNN: Predicting ncRNA-protein interactions with deep graph neural networks
    Shen, Zi-Ang
    Luo, Tao
    Zhou, Yuan-Ke
    Yu, Han
    Du, Pu-Feng
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [27] A model for predicting ncRNA-protein interactions based on graph neural networks and community detection
    Zhuo, Linlin
    Chen, Yifan
    Song, Bosheng
    Liu, Yuansheng
    Su, Yansen
    METHODS, 2022, 207 : 74 - 80
  • [28] Ligand Binding Prediction Using Protein Structure Graphs and Residual Graph Attention Networks
    Pandey, Mohit
    Radaeva, Mariia
    Mslati, Hazem
    Garland, Olivia
    Fernandez, Michael
    Ester, Martin
    Cherkasov, Artem
    MOLECULES, 2022, 27 (16):
  • [29] Predicting the functional state of protein kinases using interpretable graph neural networks
    Ravichandran, Ashwin
    Araque, Juan
    Lawson, John
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 321A - 321A
  • [30] GraphGPSM: a global scoring model for protein structure using graph neural networks
    He, Guangxing
    Liu, Jun
    Liu, Dong
    Zhang, Guijun
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)