Proximity Graph Networks: Predicting Ligand Affinity with Message Passing Neural Networks

被引:0
|
作者
Gale-Day, Zachary J. [1 ,2 ]
Shub, Laura [3 ,4 ]
Chuang, Kangway V. [3 ,4 ]
Keiser, Michael J. [3 ,4 ]
机构
[1] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Inst Neurodegenerat Dis, San Francisco, CA 94158 USA
[3] Univ Calif San Francisco, Inst Neurodegenerat Dis, Dept Pharmaceut Chem, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA
[4] Univ Calif San Francisco, Bakar Computat Hlth Sci Inst, San Francisco, CA 94158 USA
关键词
BINDING-AFFINITY; SCORING FUNCTIONS; LEARNING APPROACH; PDBBIND DATABASE; DISCOVERY; BENCHMARK;
D O I
10.1021/acs.jcim.4c00311
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Message passing neural networks (MPNNs) on molecular graphs generate continuous and differentiable encodings of small molecules with state-of-the-art performance on protein-ligand complex scoring tasks. Here, we describe the proximity graph network (PGN) package, an open-source toolkit that constructs ligand-receptor graphs based on atom proximity and allows users to rapidly apply and evaluate MPNN architectures for a broad range of tasks. We demonstrate the utility of PGN by introducing benchmarks for affinity and docking score prediction tasks. Graph networks generalize better than fingerprint-based models and perform strongly for the docking score prediction task. Overall, MPNNs with proximity graph data structures augment the prediction of ligand-receptor complex properties when ligand-receptor data are available.
引用
收藏
页码:5439 / 5450
页数:12
相关论文
共 50 条
  • [1] Revisiting the Message Passing in Heterophilous Graph Neural Networks
    Zheng, Zhuonan
    Bei, Yuanchen
    Zhou, Sheng
    Ma, Yao
    Gu, Ming
    Xu, Hongjia
    Lai, Chengyu
    Chen, Jiawei
    Bu, Jiajun
    [J]. arXiv, 2024,
  • [2] Polarized message-passing in graph neural networks
    He, Tiantian
    Liu, Yang
    Ong, Yew-Soon
    Wu, Xiaohu
    Luo, Xin
    [J]. ARTIFICIAL INTELLIGENCE, 2024, 331
  • [3] Breaking the Limits of Message Passing Graph Neural Networks
    Balcilar, Muhammet
    Heroux, Pierre
    Gauzere, Benoit
    Vasseur, Pascal
    Adam, Sebastien
    Honeine, Paul
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [4] Learning Graph Distances with Message Passing Neural Networks
    Riba, Pau
    Fischer, Andreas
    Llados, Josep
    Fornes, Alicia
    [J]. 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2239 - 2244
  • [5] Hierarchical message-passing graph neural networks
    Zhong, Zhiqiang
    Li, Cheng-Te
    Pang, Jun
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 37 (01) : 381 - 408
  • [6] Hierarchical message-passing graph neural networks
    Zhiqiang Zhong
    Cheng-Te Li
    Jun Pang
    [J]. Data Mining and Knowledge Discovery, 2023, 37 : 381 - 408
  • [7] Permutation-Equivariant and Proximity-Aware Graph Neural Networks With Stochastic Message Passing
    Zhang, Ziwei
    Niu, Chenhao
    Cui, Peng
    Pei, Jian
    Zhang, Bo
    Zhu, Wenwu
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 6182 - 6193
  • [8] Predicting Infrared Spectra with Message Passing Neural Networks
    McGill, Charles
    Forsuelo, Michael
    Guan, Yanfei
    Green, William H.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (06) : 2594 - 2609
  • [9] Graph Neural Networks with Non-Recursive Message Passing
    Tan, Qiaoyu
    Zhang, Xin
    Du, Jiahe
    Huang, Xiao
    [J]. IEEE International Conference on Data Mining Workshops, ICDMW, 2023, : 506 - 514
  • [10] Graph Neural Networks with Non-Recursive Message Passing
    Tan, Qiaoyu
    Zhang, Xin
    Du, Jiahe
    Huang, Xiao
    [J]. 2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 506 - 514