Proximity Graph Networks: Predicting Ligand Affinity with Message Passing Neural Networks

被引:0
|
作者
Gale-Day, Zachary J. [1 ,2 ]
Shub, Laura [3 ,4 ]
Chuang, Kangway V. [3 ,4 ]
Keiser, Michael J. [3 ,4 ]
机构
[1] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA
[2] Univ Calif San Francisco, Inst Neurodegenerat Dis, San Francisco, CA 94158 USA
[3] Univ Calif San Francisco, Inst Neurodegenerat Dis, Dept Pharmaceut Chem, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA
[4] Univ Calif San Francisco, Bakar Computat Hlth Sci Inst, San Francisco, CA 94158 USA
关键词
BINDING-AFFINITY; SCORING FUNCTIONS; LEARNING APPROACH; PDBBIND DATABASE; DISCOVERY; BENCHMARK;
D O I
10.1021/acs.jcim.4c00311
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Message passing neural networks (MPNNs) on molecular graphs generate continuous and differentiable encodings of small molecules with state-of-the-art performance on protein-ligand complex scoring tasks. Here, we describe the proximity graph network (PGN) package, an open-source toolkit that constructs ligand-receptor graphs based on atom proximity and allows users to rapidly apply and evaluate MPNN architectures for a broad range of tasks. We demonstrate the utility of PGN by introducing benchmarks for affinity and docking score prediction tasks. Graph networks generalize better than fingerprint-based models and perform strongly for the docking score prediction task. Overall, MPNNs with proximity graph data structures augment the prediction of ligand-receptor complex properties when ligand-receptor data are available.
引用
收藏
页码:5439 / 5450
页数:12
相关论文
共 50 条
  • [31] Learning characteristics of graph neural networks predicting protein–ligand affinities
    Andrea Mastropietro
    Giuseppe Pasculli
    Jürgen Bajorath
    [J]. Nature Machine Intelligence, 2023, 5 : 1427 - 1436
  • [32] GraphDTA: predicting drug-target binding affinity with graph neural networks
    Thin Nguyen
    Hang Le
    Quinn, Thomas P.
    Tri Nguyen
    Thuc Duy Le
    Venkatesh, Svetha
    [J]. BIOINFORMATICS, 2021, 37 (08) : 1140 - 1147
  • [33] Predicting the performance measures of a message-passing multiprocessor architecture using artificial neural networks
    Zayid, Elrasheed Ismail Mohommoud
    Akay, Mehmet Fatih
    [J]. NEURAL COMPUTING & APPLICATIONS, 2013, 23 (7-8): : 2481 - 2491
  • [34] Predicting the performance measures of a message-passing multiprocessor architecture using artificial neural networks
    Elrasheed Ismail Mohommoud Zayid
    Mehmet Fatih Akay
    [J]. Neural Computing and Applications, 2013, 23 : 2481 - 2491
  • [35] Learning characteristics of graph neural networks predicting protein-ligand affinities
    Mastropietro, Andrea
    Pasculli, Giuseppe
    Bajorath, Juergen
    [J]. NATURE MACHINE INTELLIGENCE, 2023, 5 (12) : 1427 - 1436
  • [36] Moderate Message Passing Improves Calibration: A Universal Way to Mitigate Confidence Bias in Graph Neural Networks
    Wang, Min
    Yang, Hao
    Huang, Jincai
    Cheng, Qing
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 19, 2024, : 21681 - 21689
  • [37] Mapping of artificial neural networks onto message passing systems
    Kumar, MJ
    Patnaik, LM
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1996, 26 (06): : 822 - 835
  • [38] Graph convolutional neural networks with node transition probability-based message passing and DropNode regularization
    Do, Tien Huu
    Nguyen, Duc Minh
    Bekoulis, Giannis
    Munteanu, Adrian
    Deligiannis, Nikos
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 174
  • [39] COMPETITIVE NEURAL NETWORKS ON MESSAGE-PASSING PARALLEL COMPUTERS
    CECCARELLI, M
    PETROSINO, A
    VACCARO, R
    [J]. CONCURRENCY-PRACTICE AND EXPERIENCE, 1993, 5 (06): : 449 - 470
  • [40] The message passing neural networks for chemical property prediction on SMILES
    Jo, Jeonghee
    Kwak, Bumju
    Choi, Hyun-Soo
    Yoon, Sungroh
    [J]. METHODS, 2020, 179 : 65 - 72