Data-intensive architecture for scientific knowledge discovery

被引:1
|
作者
Malcolm Atkinson
Chee Sun Liew
Michelle Galea
Paul Martin
Amrey Krause
Adrian Mouat
Oscar Corcho
David Snelling
机构
[1] University of Edinburgh,School of Informatics
[2] University of Malaya,Faculty of Computer Science and Information Technology
[3] University of Edinburgh,EPCC
[4] Universidad Politécnica de Madrid,Departamento de Inteligencia Artificial, Facultad de Informática
[5] Fujitsu Laboratories of Europe Limited,undefined
来源
关键词
Knowledge discovery; Workflow management system;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a data-intensive architecture that demonstrates the ability to support applications from a wide range of application domains, and support the different types of users involved in defining, designing and executing data-intensive processing tasks. The prototype architecture is introduced, and the pivotal role of DISPEL as a canonical language is explained. The architecture promotes the exploration and exploitation of distributed and heterogeneous data and spans the complete knowledge discovery process, from data preparation, to analysis, to evaluation and reiteration. The architecture evaluation included large-scale applications from astronomy, cosmology, hydrology, functional genetics, imaging processing and seismology.
引用
收藏
页码:307 / 324
页数:17
相关论文
共 50 条
  • [1] Data-intensive architecture for scientific knowledge discovery
    Atkinson, Malcolm
    Liew, Chee Sun
    Galea, Michelle
    Martin, Paul
    Krause, Amrey
    Mouat, Adrian
    Corcho, Oscar
    Snelling, David
    [J]. DISTRIBUTED AND PARALLEL DATABASES, 2012, 30 (5-6) : 307 - 324
  • [2] Data-Intensive Research & Scientific Discovery
    Liu, Simon Y.
    [J]. PROCEEDINGS 2016 IEEE 40TH ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE WORKSHOPS, VOL 1, 2016, : 342 - 342
  • [3] The Fourth Paradigm: Data-Intensive Scientific Discovery
    Tolle, Kristin M.
    Tansley, D. Stewart W.
    Hey, Anthony J. G.
    [J]. PROCEEDINGS OF THE IEEE, 2011, 99 (08) : 1334 - 1337
  • [4] The Fourth Paradigm - Data-Intensive Scientific Discovery
    Hey, Tony
    [J]. E-SCIENCE AND INFORMATION MANAGEMENT, 2012, 317 : 1 - 1
  • [5] The Fourth Paradigm Data-Intensive Scientific Discovery
    Collins, James P.
    [J]. SCIENCE, 2010, 327 (5972) : 1455 - 1456
  • [6] The Fourth Paradigm: Data-Intensive Scientific Discovery
    Nielsen, Michael
    [J]. NATURE, 2009, 462 (7274) : 722 - 723
  • [7] Domain-Specific Topic Model for Knowledge Discovery in Computational and Data-Intensive Scientific Communities
    Zhang, Yuanxun
    Calyam, Prasad
    Joshi, Trupti
    Nair, Satish
    Xu, Dong
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1402 - 1420
  • [8] Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing
    Zheng, Angen
    Labrinidis, Alexandros
    Chrysanthis, Panos K.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014,
  • [9] Biology and Data-Intensive Scientific Discovery in the Beginning of the 21st Century
    Smith, Arnold
    Balazinska, Magdalena
    Baru, Chaitan
    Gomelsky, Mark
    McLennan, Michael
    Rose, Lynn
    Smith, Burton
    Stewart, Elizabeth
    Kolker, Eugene
    [J]. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2011, 15 (04) : 209 - 212
  • [10] Bioinformatics and Data-Intensive Scientific Discovery in the Beginning of the 21st Century
    Barga, Roger
    Howe, Bill
    Beck, David
    Bowers, Stuart
    Dobyns, William
    Haynes, Winston
    Higdon, Roger
    Howard, Chris
    Roth, Christian
    Stewart, Elizabeth
    Welch, Dean
    Kolker, Eugene
    [J]. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2011, 15 (04) : 200 - 202