Data-intensive architecture for scientific knowledge discovery

被引:8
|
作者
Atkinson, Malcolm [2 ]
Liew, Chee Sun [1 ]
Galea, Michelle [2 ]
Martin, Paul [2 ]
Krause, Amrey [3 ]
Mouat, Adrian [3 ]
Corcho, Oscar [4 ]
Snelling, David [5 ]
机构
[1] Univ Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia
[2] Univ Edinburgh, Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
[3] Univ Edinburgh, EPCC, JCMB, Edinburgh EH9 3JZ, Midlothian, Scotland
[4] Univ Politecn Madrid, Dept Inteligencia Artificial, Fac Informat, E-28660 Madrid, Spain
[5] Fujitsu Labs Europe Ltd, Hayes UB4 8FE, Middx, England
基金
英国工程与自然科学研究理事会;
关键词
Knowledge discovery; Workflow management system; WORKFLOWS;
D O I
10.1007/s10619-012-7105-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a data-intensive architecture that demonstrates the ability to support applications from a wide range of application domains, and support the different types of users involved in defining, designing and executing data-intensive processing tasks. The prototype architecture is introduced, and the pivotal role of DISPEL as a canonical language is explained. The architecture promotes the exploration and exploitation of distributed and heterogeneous data and spans the complete knowledge discovery process, from data preparation, to analysis, to evaluation and reiteration. The architecture evaluation included large-scale applications from astronomy, cosmology, hydrology, functional genetics, imaging processing and seismology.
引用
收藏
页码:307 / 324
页数:18
相关论文
共 50 条
  • [1] Data-intensive architecture for scientific knowledge discovery
    Malcolm Atkinson
    Chee Sun Liew
    Michelle Galea
    Paul Martin
    Amrey Krause
    Adrian Mouat
    Oscar Corcho
    David Snelling
    [J]. Distributed and Parallel Databases, 2012, 30 : 307 - 324
  • [2] Data-Intensive Research & Scientific Discovery
    Liu, Simon Y.
    [J]. PROCEEDINGS 2016 IEEE 40TH ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE WORKSHOPS, VOL 1, 2016, : 342 - 342
  • [3] The Fourth Paradigm: Data-Intensive Scientific Discovery
    Tolle, Kristin M.
    Tansley, D. Stewart W.
    Hey, Anthony J. G.
    [J]. PROCEEDINGS OF THE IEEE, 2011, 99 (08) : 1334 - 1337
  • [4] The Fourth Paradigm - Data-Intensive Scientific Discovery
    Hey, Tony
    [J]. E-SCIENCE AND INFORMATION MANAGEMENT, 2012, 317 : 1 - 1
  • [5] The Fourth Paradigm Data-Intensive Scientific Discovery
    Collins, James P.
    [J]. SCIENCE, 2010, 327 (5972) : 1455 - 1456
  • [6] The Fourth Paradigm: Data-Intensive Scientific Discovery
    Nielsen, Michael
    [J]. NATURE, 2009, 462 (7274) : 722 - 723
  • [7] Domain-Specific Topic Model for Knowledge Discovery in Computational and Data-Intensive Scientific Communities
    Zhang, Yuanxun
    Calyam, Prasad
    Joshi, Trupti
    Nair, Satish
    Xu, Dong
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1402 - 1420
  • [8] Architecture-Aware Graph Repartitioning for Data-Intensive Scientific Computing
    Zheng, Angen
    Labrinidis, Alexandros
    Chrysanthis, Panos K.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014,
  • [9] Biology and Data-Intensive Scientific Discovery in the Beginning of the 21st Century
    Smith, Arnold
    Balazinska, Magdalena
    Baru, Chaitan
    Gomelsky, Mark
    McLennan, Michael
    Rose, Lynn
    Smith, Burton
    Stewart, Elizabeth
    Kolker, Eugene
    [J]. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2011, 15 (04) : 209 - 212
  • [10] Bioinformatics and Data-Intensive Scientific Discovery in the Beginning of the 21st Century
    Barga, Roger
    Howe, Bill
    Beck, David
    Bowers, Stuart
    Dobyns, William
    Haynes, Winston
    Higdon, Roger
    Howard, Chris
    Roth, Christian
    Stewart, Elizabeth
    Welch, Dean
    Kolker, Eugene
    [J]. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2011, 15 (04) : 200 - 202