Data-intensive architecture for scientific knowledge discovery

被引:1
|
作者
Malcolm Atkinson
Chee Sun Liew
Michelle Galea
Paul Martin
Amrey Krause
Adrian Mouat
Oscar Corcho
David Snelling
机构
[1] University of Edinburgh,School of Informatics
[2] University of Malaya,Faculty of Computer Science and Information Technology
[3] University of Edinburgh,EPCC
[4] Universidad Politécnica de Madrid,Departamento de Inteligencia Artificial, Facultad de Informática
[5] Fujitsu Laboratories of Europe Limited,undefined
来源
关键词
Knowledge discovery; Workflow management system;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a data-intensive architecture that demonstrates the ability to support applications from a wide range of application domains, and support the different types of users involved in defining, designing and executing data-intensive processing tasks. The prototype architecture is introduced, and the pivotal role of DISPEL as a canonical language is explained. The architecture promotes the exploration and exploitation of distributed and heterogeneous data and spans the complete knowledge discovery process, from data preparation, to analysis, to evaluation and reiteration. The architecture evaluation included large-scale applications from astronomy, cosmology, hydrology, functional genetics, imaging processing and seismology.
引用
收藏
页码:307 / 324
页数:17
相关论文
共 50 条
  • [41] Scientific Programming Techniques and Algorithms for Data-Intensive Engineering Environments
    Alor-Hernandez, Giner
    Mejia-Miranda, Jezreel
    Maria Alvarez-Rodriguez, Jose
    [J]. SCIENTIFIC PROGRAMMING, 2018, 2018
  • [42] Science in the Cloud: Allocation and Execution of Data-Intensive Scientific Workflows
    Szabo, Claudia
    Sheng, Quan Z.
    Kroeger, Trent
    Zhang, Yihong
    Yu, Jian
    [J]. JOURNAL OF GRID COMPUTING, 2014, 12 (02) : 245 - 264
  • [43] Parameterized specification, configuration and execution of data-intensive scientific workflows
    Kumar, Vijay S.
    Kurc, Tahsin
    Ratnakar, Varun
    Kim, Jihie
    Mehta, Gaurang
    Vahi, Karan
    Nelson, Yoonju Lee
    Sadayappan, P.
    Deelman, Ewa
    Gil, Yolanda
    Hall, Mary
    Saltz, Joel
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2010, 13 (03): : 315 - 333
  • [44] An intelligent memory caching architecture for data-intensive multimedia applications
    Aaqif Afzaal Abbasi
    Sameen Javed
    Shahaboddin Shamshirband
    [J]. Multimedia Tools and Applications, 2021, 80 : 16743 - 16761
  • [45] DORIC: An Architecture for Data-intensive Real-time Applications
    Cadaviz, Miguel Kassick
    Farias, Kleinner
    Goncales, Lucian Jose
    Bischoff, Vinicius
    [J]. PROCEEDINGS OF THE 14TH BRAZILIAN SYMPOSIUM ON INFORMATION SYSTEMS (SBSI2018), 2018, : 536 - 542
  • [46] An intelligent memory caching architecture for data-intensive multimedia applications
    Abbasi, Aaqif Afzaal
    Javed, Sameen
    Shamshirband, Shahaboddin
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (11) : 16743 - 16761
  • [47] A fast, simple router for the Data-Intensive Architecture (DIVA) system
    Kang, CW
    Draper, J
    [J]. PROCEEDINGS OF THE 43RD IEEE MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I-III, 2000, : 188 - 192
  • [48] A topical evaluation and discussion of data movement technologies for data-intensive scientific applications
    Mattmann, Chris A.
    Cinquini, Luca
    Zimdars, Paul
    Joyce, Michael
    Khudikyan, Shakeh
    [J]. EARTH SCIENCE INFORMATICS, 2016, 9 (02) : 247 - 262
  • [49] A topical evaluation and discussion of data movement technologies for data-intensive scientific applications
    Chris A. Mattmann
    Luca Cinquini
    Paul Zimdars
    Michael Joyce
    Shakeh Khudikyan
    [J]. Earth Science Informatics, 2016, 9 : 247 - 262
  • [50] Instant-On Scientific Data Warehouses Lazy ETL for Data-Intensive Research
    Kargin, Yagiz
    Pirk, Holger
    Ivanova, Milena
    Manegold, Stefan
    Kersten, Martin
    [J]. ENABLING REAL-TIME BUSINESS INTELLIGENCE, VLDB 2012, 2013, 154 : 60 - 75