Nonexistence of asymptotically self-similar singularities in the Euler and the Navier–Stokes equations

被引:0
|
作者
Dongho Chae
机构
[1] Sungkyunkwan University,Department of Mathematics
来源
Mathematische Annalen | 2007年 / 338卷
关键词
35Q30; 35Q35; 76Dxx; 76Bxx;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we rule out the possibility of asymptotically self-similar singularities for both of the 3D Euler and the 3D Navier–Stokes equations. The notion means that the local in time classical solutions of the equations develop self-similar profiles as t goes to the possible time of singularity T. For the Euler equations we consider the case where the vorticity converges to the corresponding self-similar voriticity profile in the sense of the critical Besov space norm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{B}^0_{\infty, 1}(\mathbb{R}^3)$$\end{document}. For the Navier–Stokes equations the convergence of the velocity to the self-similar singularity is in Lq(B(z,r)) for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in [2, \infty)$$\end{document}, where the ball of radius r is shrinking toward a possible singularity point z at the order of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{T-t}$$\end{document} as t approaches to T. In the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q (\mathbb{R}^3)$$\end{document} convergence case with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in [3, \infty)$$\end{document} we present a simple alternative proof of the similar result in Hou and Li in arXiv-preprint, math.AP/0603126.
引用
收藏
页码:435 / 449
页数:14
相关论文
共 50 条