In this paper we rule out the possibility of asymptotically self-similar singularities for both of the 3D Euler and the 3D Navier–Stokes equations. The notion means that the local in time classical solutions of the equations develop self-similar profiles as t goes to the possible time of singularity T. For the Euler equations we consider the case where the vorticity converges to the corresponding self-similar voriticity profile in the sense of the critical Besov space norm, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{B}^0_{\infty, 1}(\mathbb{R}^3)$$\end{document}. For the Navier–Stokes equations the convergence of the velocity to the self-similar singularity is in Lq(B(z,r)) for some \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q\in [2, \infty)$$\end{document}, where the ball of radius r is shrinking toward a possible singularity point z at the order of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sqrt{T-t}$$\end{document} as t approaches to T. In the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^q (\mathbb{R}^3)$$\end{document} convergence case with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q\in [3, \infty)$$\end{document} we present a simple alternative proof of the similar result in Hou and Li in arXiv-preprint, math.AP/0603126.