An efficient machine learning-based approach for screening individuals at risk of hereditary haemochromatosis

被引:0
|
作者
Patricia Martins Conde
Thomas Sauter
Thanh-Phuong Nguyen
机构
[1] Megeno S.A,
[2] University of Luxembourg,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Hereditary haemochromatosis (HH) is an autosomal recessive disease, where HFE C282Y homozygosity accounts for 80–85% of clinical cases among the Caucasian population. HH is characterised by the accumulation of iron, which, if untreated, can lead to the development of liver cirrhosis and liver cancer. Since iron overload is preventable and treatable if diagnosed early, high-risk individuals can be identified through effective screening employing artificial intelligence-based approaches. However, such tools expose novel challenges associated with the handling and integration of large heterogeneous datasets. We have developed an efficient computational model to screen individuals for HH using the family study data of the Hemochromatosis and Iron Overload Screening (HEIRS) cohort. This dataset, consisting of 254 cases and 701 controls, contains variables extracted from questionnaires and laboratory blood tests. The final model was trained on an extreme gradient boosting classifier using the most relevant risk factors: HFE C282Y homozygosity, age, mean corpuscular volume, iron level, serum ferritin level, transferrin saturation, and unsaturated iron-binding capacity. Hyperparameter optimisation was carried out with multiple runs, resulting in 0.94 ± 0.02 area under the receiving operating characteristic curve (AUCROC) for tenfold stratified cross-validation, demonstrating its outperformance when compared to the iron overload screening (IRON) tool.
引用
收藏
相关论文
共 50 条
  • [41] A Machine Learning-based Approach for The Prediction of Electricity Consumption
    Dinh Hoa Nguyen
    Anh Tung Nguyen
    2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 1301 - 1306
  • [42] A Machine Learning-Based Approach for Crop Price Prediction
    Gururaj, H. L.
    Janhavi, V.
    Lakshmi, H.
    Soundarya, B. C.
    Paramesha, K.
    Ramesh, B.
    Rajendra, A. B.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (03)
  • [43] A Machine Learning-Based Lexicon Approach for Sentiment Analysis
    Sahu, Tirath Prasad
    Khandekar, Sarang
    INTERNATIONAL JOURNAL OF TECHNOLOGY AND HUMAN INTERACTION, 2020, 16 (02) : 8 - 22
  • [44] Phishing Attacks Detection A Machine Learning-Based Approach
    Salahdine, Fatima
    El Mrabet, Zakaria
    Kaabouch, Naima
    2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2021, : 250 - 255
  • [45] Machine learning-based new approach to films review
    Mustafa Abdalrassual Jassim
    Dhafar Hamed Abd
    Mohamed Nazih Omri
    Social Network Analysis and Mining, 13
  • [46] Subtyping of hepatocellular adenoma: a machine learning-based approach
    Liu, Yongjun
    Liu, Yao-Zhong
    Sun, Lifu
    Zen, Yoh
    Inomoto, Chie
    Yeh, Matthew M.
    VIRCHOWS ARCHIV, 2022, 481 (01) : 49 - 61
  • [47] Machine Learning-Based Multilevel Intrusion Detection Approach
    Ling, Jiasheng
    Zhang, Lei
    Liu, Chenyang
    Xia, Guoxin
    Zhang, Zhenxiong
    ELECTRONICS, 2025, 14 (02):
  • [48] A machine learning-based approach for estimating available bandwidth
    Chen, Ling-Jyh
    Chou, Cheng-Fu
    Wang, Bo-Chun
    TENCON 2007 - 2007 IEEE REGION 10 CONFERENCE, VOLS 1-3, 2007, : 164 - +
  • [49] BROKEN RAIL PREDICTION WITH MACHINE LEARNING-BASED APPROACH
    Zhang, Zhipeng
    Zhou, Kang
    Liu, Xiang
    PROCEEDINGS OF THE JOINT RAIL CONFERENCE (JRC2020), 2020,
  • [50] Review article: Targeted screening for hereditary haemochromatosis in high-risk groups
    DuBois, S
    Kowdley, KV
    ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2004, 20 (01) : 1 - 14