An efficient machine learning-based approach for screening individuals at risk of hereditary haemochromatosis

被引:0
|
作者
Patricia Martins Conde
Thomas Sauter
Thanh-Phuong Nguyen
机构
[1] Megeno S.A,
[2] University of Luxembourg,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Hereditary haemochromatosis (HH) is an autosomal recessive disease, where HFE C282Y homozygosity accounts for 80–85% of clinical cases among the Caucasian population. HH is characterised by the accumulation of iron, which, if untreated, can lead to the development of liver cirrhosis and liver cancer. Since iron overload is preventable and treatable if diagnosed early, high-risk individuals can be identified through effective screening employing artificial intelligence-based approaches. However, such tools expose novel challenges associated with the handling and integration of large heterogeneous datasets. We have developed an efficient computational model to screen individuals for HH using the family study data of the Hemochromatosis and Iron Overload Screening (HEIRS) cohort. This dataset, consisting of 254 cases and 701 controls, contains variables extracted from questionnaires and laboratory blood tests. The final model was trained on an extreme gradient boosting classifier using the most relevant risk factors: HFE C282Y homozygosity, age, mean corpuscular volume, iron level, serum ferritin level, transferrin saturation, and unsaturated iron-binding capacity. Hyperparameter optimisation was carried out with multiple runs, resulting in 0.94 ± 0.02 area under the receiving operating characteristic curve (AUCROC) for tenfold stratified cross-validation, demonstrating its outperformance when compared to the iron overload screening (IRON) tool.
引用
收藏
相关论文
共 50 条
  • [21] Efficient Machine Learning-based Approach for Brain Tumor Detection Using the CAD System
    Guerroudji, Mohamed Amine
    Hadjadj, Zineb
    Lichouri, Mohamed
    Amara, Kahina
    Zenati, Nadia
    IETE JOURNAL OF RESEARCH, 2024, 70 (04) : 3664 - 3678
  • [22] A learning-based approach for efficient visualization construction
    Sun, Yongjian
    Li, Jie
    Chen, Siming
    Andrienko, Gennady
    Andrienko, Natalia
    Zhang, Kang
    VISUAL INFORMATICS, 2022, 6 (01) : 14 - 25
  • [23] Malnutrition risk assessment using a machine learning-based screening tool: A multicentre retrospective cohort
    Parchuri, Pramathamesh
    Besculides, Melanie
    Zhan, Serena
    Cheng, Fu-yuan
    Timsina, Prem
    Cheertirala, Satya Narayana
    Kersch, Ilana
    Wilson, Sara
    Freeman, Robert
    Reich, David
    Mazumdar, Madhu
    Kia, Arash
    JOURNAL OF HUMAN NUTRITION AND DIETETICS, 2024, 37 (03) : 622 - 632
  • [24] A family-centered orthodontic screening approach using a machine learning-based mobile application
    Kilic, Banu
    Ibrahim, Ahmed Hassan
    Aksoy, Selahattin
    Sakman, Mehmet Cihan
    Demircan, Gul Sude
    Onal-Suzek, Tugba
    JOURNAL OF DENTAL SCIENCES, 2024, 19 (01) : 186 - 195
  • [25] Machine Learning-Based Approach to Identifying Fall Risk in Seafarers Using Wearable Sensors
    Choi, Jungyeon
    Knarr, Brian A.
    Youn, Jong-Hoon
    Song, Kwang Yoon
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (02)
  • [26] An Efficacy Evaluation on Prediabetes Management Using a Machine Learning-Based Risk Stratification Approach
    Zou, Xiantong
    Zhu, Zhanxing
    Luo, Yingying
    Li, Yufeng
    Zhou, Xianghai
    Ji, Linong
    DIABETES, 2019, 68
  • [27] A machine learning-based screening tool for genetic syndromes in children
    Mensah, Martin Atta
    Ott, Claus-Eric
    Horn, Denise
    Pantel, Jean Tori
    LANCET DIGITAL HEALTH, 2022, 4 (05): : E295 - E295
  • [28] Machine Learning-Based Toxicological Modeling for Screening Environmental Obesogens
    Wu, Siying
    Wang, Linping
    Schlenk, Daniel
    Liu, Jing
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2024, 58 (41) : 18133 - 18144
  • [29] RisklnDroid: Machine Learning-Based Risk Analysis on Android
    Merlo, Alessio
    Georgiu, Gabriel Claudiu
    ICT SYSTEMS SECURITY AND PRIVACY PROTECTION, SEC 2017, 2017, 502 : 538 - 552
  • [30] A Machine Learning-based Method for Cyber Risk Assessment
    Rafaiani, Giulia
    Battaglioni, Massimo
    Compagnoni, Simone
    Senigagliesi, Linda
    Chiaraluce, Franco
    Baldi, Marco
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 263 - 268