On the diophantine equation X2 − (1 + a2)Y4 = −2a

被引:0
|
作者
PingZhi Yuan
ZhongFeng Zhang
机构
[1] South China Normal University,School of Mathematics
[2] Sun Yat-Sen University,School of Mathematics & Computational Science
来源
Science China Mathematics | 2010年 / 53卷
关键词
algebraic approximations; continued fractions; elliptic curves; quartic equations; 11B39; 11D41;
D O I
暂无
中图分类号
学科分类号
摘要
Let a ⩾ 1 be an integer. In this paper, we will prove the equation in the title has at most three positive integer solutions.
引用
收藏
页码:2143 / 2158
页数:15
相关论文
共 50 条
  • [41] A note on the Diophantine equation x2 + qm = y3
    Zhu, Hui Lin
    ACTA ARITHMETICA, 2011, 146 (02) : 195 - 202
  • [42] ON THE DIOPHANTINE EQUATION Z(2) = X(4)+DX(2)Y(2)+Y(4)
    COHN, JHE
    GLASGOW MATHEMATICAL JOURNAL, 1994, 36 : 283 - 285
  • [43] ON THE DIOPHANTINE EQUATION X4+/-Y4=ZP
    POWELL, B
    BULLETIN DES SCIENCES MATHEMATIQUES, 1983, 107 (02): : 219 - 223
  • [44] On the Diophantine equation x4 + y4 = c
    Bremner, Andrew
    Tho, Nguyen Xuan
    ACTA ARITHMETICA, 2022, : 141 - 150
  • [45] DIOPHANTINE EQUATION X2 + D=4YQ
    LJUNGGREN, W
    MONATSHEFTE FUR MATHEMATIK, 1971, 75 (02): : 136 - +
  • [46] ON THE DIOPHANTINE EQUATION X2 + D = 4PN
    LE, MH
    JOURNAL OF NUMBER THEORY, 1992, 41 (01) : 87 - 97
  • [47] On the diophantine equation (x(x-1)/2)(2)=y(y-1)/2
    Luo, M
    FIBONACCI QUARTERLY, 1996, 34 (03): : 277 - 279
  • [48] On the Diophantine equations x2 - Dy2 = -1 and x2 - Dy2 = 4
    Chen, Bingzhou
    Luo, Jiagui
    AIMS MATHEMATICS, 2019, 4 (04): : 1170 - 1180
  • [49] Line lists for the X2Σ+-X2Σ+, A2Π-A2Π and A2Π-X2Σ+transitions of CP
    Qin, Zhi
    Bai, Tianrui
    Liu, Linhua
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2021, 258
  • [50] A note on the diophantine equation ((x)(4))=((y)(2))
    Pinter, AK
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1995, 47 (3-4): : 411 - 415