On the diophantine equation X2 − (1 + a2)Y4 = −2a

被引:0
|
作者
PingZhi Yuan
ZhongFeng Zhang
机构
[1] South China Normal University,School of Mathematics
[2] Sun Yat-Sen University,School of Mathematics & Computational Science
来源
Science China Mathematics | 2010年 / 53卷
关键词
algebraic approximations; continued fractions; elliptic curves; quartic equations; 11B39; 11D41;
D O I
暂无
中图分类号
学科分类号
摘要
Let a ⩾ 1 be an integer. In this paper, we will prove the equation in the title has at most three positive integer solutions.
引用
收藏
页码:2143 / 2158
页数:15
相关论文
共 50 条
  • [31] ON THE DIOPHANTINE EQUATION x2 + x+1=yz
    Schinzel, A.
    COLLOQUIUM MATHEMATICUM, 2015, 141 (02) : 243 - 248
  • [32] The Diophantine equation X2-db2Y4=1
    Walsh, G
    ACTA ARITHMETICA, 1998, 87 (02) : 179 - 188
  • [33] A Note on the Diophantine Equation x2 + y6 = ze, e ≥ 4
    Zelator, Konstantine
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (02): : 435 - 440
  • [34] On the Diophantine equation x2 − kxy + y2 − 2n = 0
    Refik Keskin
    Zafer Şiar
    Olcay Karaatli
    Czechoslovak Mathematical Journal, 2013, 63 : 783 - 797
  • [35] On the Diophantine equation x2 - kxy plus y2-2n=0
    Keskin, Refik
    Siar, Zafer
    Karaatli, Olcay
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 783 - 797
  • [36] DIOPHANTINE EQUATION X4 + Y4=2(U4 + V4)
    Izadi, Farzali
    Nabardi, Kamran
    MATHEMATICA SLOVACA, 2016, 66 (03) : 557 - 560
  • [37] On the diophantine equation D(1)x(4)-D(2)y(2)=1
    Le, MH
    ACTA ARITHMETICA, 1996, 76 (01) : 1 - 9
  • [38] On the Diophantine equation X2-(22m+1)Y4=-22m
    Stoll, Michael
    Walsh, P. G.
    Yuan, Pingzhi
    ACTA ARITHMETICA, 2009, 139 (01) : 57 - 63
  • [39] A note on the diophantine equation (an − 1)(bn − 1) = x2
    Guo Xiaoyan
    Periodica Mathematica Hungarica, 2013, 66 : 87 - 93
  • [40] A note on the ternary Diophantine equation x2 - y2m = zn
    Berczes, Attila
    Le, Maohua
    Pink, Istvan
    Soydan, Gokhan
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2021, 29 (02): : 93 - 105