On the diophantine equation X2 − (1 + a2)Y4 = −2a

被引:0
|
作者
PingZhi Yuan
ZhongFeng Zhang
机构
[1] South China Normal University,School of Mathematics
[2] Sun Yat-Sen University,School of Mathematics & Computational Science
来源
Science China Mathematics | 2010年 / 53卷
关键词
algebraic approximations; continued fractions; elliptic curves; quartic equations; 11B39; 11D41;
D O I
暂无
中图分类号
学科分类号
摘要
Let a ⩾ 1 be an integer. In this paper, we will prove the equation in the title has at most three positive integer solutions.
引用
收藏
页码:2143 / 2158
页数:15
相关论文
共 50 条
  • [1] On the diophantine equation X2-(1+a2)Y4=-2a
    Yuan PingZhi
    Zhang ZhongFeng
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (08) : 2143 - 2158
  • [2] On the diophantine equation X2-(1+a2)Y4 =-2a
    YUAN PingZhi 1 & ZHANG ZhongFeng 2 1 School of Mathematics
    2 School of Mathematics & Computational Science
    ScienceChina(Mathematics), 2010, 53 (08) : 2143 - 2158
  • [3] A NOTE ON TWO DIOPHANTINE EQUATIONS x2 ± 2a pb = y4
    Zhu, Huilin
    Soydan, Gokhan
    Qin, Wei
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (03) : 1105 - 1111
  • [4] On the Diophantine equation X2 - (22m+1)Y4 =-22m
    He, Bo
    Togbe, Alain
    Walsh, P. Gary
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2008, 73 (3-4): : 417 - 420
  • [5] ON THE DIOPHANTINE INEQUALITY |X2 - cXY2 + Y4| ≤ c+2
    He, Bo
    Pink, Istvan
    Pinter, Akos
    Togbe, Alain
    GLASNIK MATEMATICKI, 2013, 48 (02) : 291 - 299
  • [6] A note on a theorem of Ljunggren and the Diophantine equations x2–kxy2 + y4 = 1, 4
    Gary Walsh
    Archiv der Mathematik, 1999, 73 : 119 - 125
  • [7] ON THE NUMBER OF SOLUTIONS OF THE DIOPHANTINE EQUATION x2+2a . pb = y4
    Zhu, Huilin
    Le, Maohua
    Soydan, Goekhan
    MATHEMATICAL REPORTS, 2015, 17 (03): : 255 - 263
  • [8] The diophantine equation x2 + 2a · 17b = yn
    Su Gou
    Tingting Wang
    Czechoslovak Mathematical Journal, 2012, 62 : 645 - 654
  • [9] On the diophantine equation x2 + 2a · 19b = yn
    Gökhan Soydan
    Maciej Ulas
    Hui Lin Zhu
    Indian Journal of Pure and Applied Mathematics, 2012, 43 : 251 - 261
  • [10] On the Classical Diophantine Equation x4 + y4 + kx2y2 = z2
    Stoenchev, Miroslav
    Todorov, Venelin
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE20), 2021, 2333