Projections of Galois Rings

被引:0
|
作者
S. S. Korobkov
机构
[1] Ural State Pedagogical University,
来源
Algebra and Logic | 2015年 / 54卷
关键词
Galois rings; lattice isomorphisms of associative rings;
D O I
暂无
中图分类号
学科分类号
摘要
Let R and Rφ be associative rings with isomorphic subring lattices and φ be a lattice isomorphism (a projection) of the ring R onto the ring Rφ. We call Rφ the projective image of a ring R and call the ring R itself the projective preimage of a ring Rφ. We study lattice isomorphisms of Galois rings. By a Galois ring we mean a ring GR(pn, m) isomorphic to the factor ring K[x]/(f(x)), where K = Z/pnZ, p is a prime, f(x) is a polynomial of degree m irreducible over K, and (f(x)) is a principal ideal generated by the polynomial f(x) in the ring K[x]. Properties of the lattice of subrings of a Galois ring depend on values of numbers n and m. A subring lattice L of GR(pn, m) has the simplest structure for m = 1 (L is a chain) and for n = 1 (L is distributive). It turned out that only in these cases there are examples of projections of Galois ring onto rings that are not Galois rings. We prove the following result (Thm. 4). Let R = GR(pn, qm), where n > 1 and m > 1. Then Rφ ≅ R.
引用
收藏
页码:10 / 22
页数:12
相关论文
共 50 条
  • [31] GALOIS CLOSURE DATA FOR EXTENSIONS OF RINGS
    OWEN BIESEL
    Transformation Groups, 2018, 23 : 41 - 69
  • [32] A NOTE ON GALOIS THEORY OF COMMUTATIVE RINGS
    NAGAHARA, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 18 (02) : 334 - &
  • [33] GALOIS MODULE STRUCTURE OF RINGS OF INTEGERS
    CALDERON, MR
    SALVADOR, GDV
    MADAN, ML
    MATHEMATISCHE ZEITSCHRIFT, 1990, 204 (03) : 401 - 424
  • [34] Galois structure of homogeneous coordinate rings
    Bleher, Frauke M.
    Chinburg, Ted
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (12) : 6269 - 6301
  • [35] A note on a standard model for Galois rings
    Martinez-Moro, E.
    Pinera-Nicolas, A.
    Rua, I. F.
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023,
  • [36] Additive codes over Galois rings
    Mahmoudi, Saadoun
    Samei, Karim
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 56 : 332 - 350
  • [37] On a notion of "Galois closure" for extensions of rings
    Bhargava, Manjul
    Satriano, Matthew
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (09) : 1881 - 1913
  • [38] A note on the Galois correspondence for commutative rings
    Carboni, A
    Janelidze, G
    Magid, AR
    JOURNAL OF ALGEBRA, 1996, 183 (01) : 266 - 272
  • [39] GALOIS THEORY OF PRIME-RINGS
    MONTGOMERY, S
    PASSMAN, DS
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 31 (1-3) : 139 - 184
  • [40] COORDINATE SETS OF GENERALIZED GALOIS RINGS
    Gonzalez, S.
    Martinez, C.
    Rua, I. F.
    Markov, V. T.
    Nechaev, A. A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2004, 3 (01) : 31 - 48