A Penrose-like Inequality for the Mass of Riemannian Asymptotically Flat Manifolds

被引:0
|
作者
Marc Herzlich
机构
[1] Centre de Mathématiques de l'Ecole polytechnique,
[2] CNRS URA 169,undefined
[3] 91128 Palaiseau Cedex,undefined
[4] France and Département de Mathématiques,undefined
[5] Université de Cergy-Pontoise,undefined
[6] Site de Saint Martin,undefined
[7] 95302 Cergy-Pontoise Cedex,undefined
[8] France. E-mail: herzlich@math.polytechnique.fr,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove an optimal Penrose-like inequality for the mass of any asymptotically flat Riemannian 3-manifold having an inner minimal 2-sphere and nonnegative scalar curvature. Our result shows that the mass is bounded from below by an expression involving the area of the minimal sphere (as in the original Penrose conjecture) and some nomalized Sobolev ratio. As expected, the equality case is achieved if and only if the metric is that of a standard spacelike slice in the Schwarzschild space.
引用
收藏
页码:121 / 133
页数:12
相关论文
共 50 条