Building on previous works of Bray, of Miao, and of Almaraz, Barbosa, and de Lima, we develop a doubling procedure for asymptotically flat half-spaces (M, g) with horizon boundary Σ⊂M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Sigma \subset M$$\end{document} and mass m∈R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m\in {\mathbb {R}}$$\end{document}. If 3≤dim(M)≤7\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3\le \dim (M)\le 7$$\end{document}, (M, g) has non-negative scalar curvature, and the boundary ∂M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\partial M$$\end{document} is mean-convex, we obtain the Riemannian Penrose-type inequality m≥12nn-1|Σ|ωn-1n-2n-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} m\ge \left( \frac{1}{2}\right) ^{\frac{n}{n-1}}\,\left( \frac{|\Sigma |}{\omega _{n-1}}\right) ^{\frac{n-2}{n-1}} \end{aligned}$$\end{document}as a corollary. Moreover, in the case where ∂M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\partial M$$\end{document} is not totally geodesic, we show how to construct local perturbations of (M, g) that increase the scalar curvature. As a consequence, we show that equality holds in the above inequality if and only if the exterior region of (M, g) is isometric to a Schwarzschild half-space. Previously, these results were only known in the case where dim(M)=3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dim (M)=3$$\end{document} and Σ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Sigma $$\end{document} is a connected free boundary hypersurface.