A Penrose-like Inequality for the Mass of Riemannian Asymptotically Flat Manifolds

被引:0
|
作者
Marc Herzlich
机构
[1] Centre de Mathématiques de l'Ecole polytechnique,
[2] CNRS URA 169,undefined
[3] 91128 Palaiseau Cedex,undefined
[4] France and Département de Mathématiques,undefined
[5] Université de Cergy-Pontoise,undefined
[6] Site de Saint Martin,undefined
[7] 95302 Cergy-Pontoise Cedex,undefined
[8] France. E-mail: herzlich@math.polytechnique.fr,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove an optimal Penrose-like inequality for the mass of any asymptotically flat Riemannian 3-manifold having an inner minimal 2-sphere and nonnegative scalar curvature. Our result shows that the mass is bounded from below by an expression involving the area of the minimal sphere (as in the original Penrose conjecture) and some nomalized Sobolev ratio. As expected, the equality case is achieved if and only if the metric is that of a standard spacelike slice in the Schwarzschild space.
引用
收藏
页码:121 / 133
页数:12
相关论文
共 50 条
  • [21] Harmonic Functions and the Mass of 3-Dimensional Asymptotically Flat Riemannian Manifolds
    Bray, Hubert L.
    Kazaras, Demetre P.
    Khuri, Marcus A.
    Stern, Daniel L.
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (06)
  • [22] Harmonic Functions and the Mass of 3-Dimensional Asymptotically Flat Riemannian Manifolds
    Hubert L. Bray
    Demetre P. Kazaras
    Marcus A. Khuri
    Daniel L. Stern
    The Journal of Geometric Analysis, 2022, 32
  • [23] Isoperimetry, Scalar Curvature, and Mass in Asymptotically Flat Riemannian 3-Manifolds
    Chodosh, Otis
    Eichmair, Michael
    Shi, Yuguang
    Yu, Haobin
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (04) : 865 - 905
  • [24] THE EQUALITY CASE OF THE PENROSE INEQUALITY FOR ASYMPTOTICALLY FLAT GRAPHS
    Huang, Lan-Hsuan
    Wu, Damin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (01) : 31 - 47
  • [25] Erratum to: A Penrose-Like Inequality for General Initial Data Sets
    Marcus A. Khuri
    Communications in Mathematical Physics, 2013, 317 : 267 - 267
  • [26] A new mass for asymptotically flat manifolds
    Ge, Yuxin
    Wang, Guofang
    Wu, Jie
    ADVANCES IN MATHEMATICS, 2014, 266 : 84 - 119
  • [27] The Riemannian Penrose inequality
    Huisken, G
    Ilmanen, T
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1997, 1997 (20) : 1045 - 1058
  • [28] Near-Equality of the Penrose Inequality for Rotationally Symmetric Riemannian Manifolds
    Dan A. Lee
    Christina Sormani
    Annales Henri Poincaré, 2012, 13 : 1537 - 1556
  • [29] Near-Equality of the Penrose Inequality for Rotationally Symmetric Riemannian Manifolds
    Lee, Dan A.
    Sormani, Christina
    ANNALES HENRI POINCARE, 2012, 13 (07): : 1537 - 1556
  • [30] The Penrose Inequality for Asymptotically Locally Hyperbolic Spaces with Nonpositive Mass
    Dan A. Lee
    André Neves
    Communications in Mathematical Physics, 2015, 339 : 327 - 352