Congruences for certain binomial sums

被引:0
|
作者
Jung-Jo Lee
机构
[1] Yonsei University,
来源
关键词
central binomial coefficient; Legendre polynomial; 05A10; 11B65;
D O I
暂无
中图分类号
学科分类号
摘要
We exploit the properties of Legendre polynomials defined by the contour integral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{P}}_n}(z) = {(2{\rm{\pi i}})^{ - 1}}\oint {{{(1 - 2tz + {t^2})}^{ - 1/2}}{t^{ - n - 1}}{\rm{d}}t} $$\end{document}, where the contour encloses the origin and is traversed in the counterclockwise direction, to obtain congruences of certain sums of central binomial coefficients. More explicitly, by comparing various expressions of the values of Legendre polynomials, it can be proved that for any positive integer r, a prime p ⩾5 and n = rp2 − 1, we have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{k = 0}^{\left\lfloor {n/2} \right\rfloor } {(_k^{2k} ) \equiv 0,1} $$\end{document} or −1 (mod p2), depending on the value of r (mod 6).
引用
收藏
页码:65 / 71
页数:6
相关论文
共 50 条
  • [1] Congruences for certain binomial sums
    Lee, Jung-Jo
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (01) : 65 - 71
  • [2] On some congruences of certain binomial sums
    Yungui Chen
    Xiaoyan Xie
    Bing He
    [J]. The Ramanujan Journal, 2016, 40 : 237 - 244
  • [3] Corrigendum to "congruences for certain binomial sums"
    Lee J.-J.
    [J]. Czechoslovak Mathematical Journal, 2013, 63 (2) : 573 - 575
  • [4] On some congruences of certain binomial sums
    Chen, Yungui
    Xie, Xiaoyan
    He, Bing
    [J]. RAMANUJAN JOURNAL, 2016, 40 (02): : 237 - 244
  • [5] congruences for certain binomial sums (vol 63, pg 65, 2013)
    Lee, Jung-Jo
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (02) : 573 - 575
  • [6] Congruences for sums of binomial coefficients
    Sun, Zhi-Wei
    Tauraso, Roberto
    [J]. JOURNAL OF NUMBER THEORY, 2007, 126 (02) : 287 - 296
  • [7] Proof of Sun's conjectures on super congruences and the divisibility of certain binomial sums
    Mao, Guo-Shuai
    Zhang, Tao
    [J]. RAMANUJAN JOURNAL, 2019, 50 (01): : 1 - 11
  • [8] Proof of Sun’s conjectures on super congruences and the divisibility of certain binomial sums
    Guo-Shuai Mao
    Tao Zhang
    [J]. The Ramanujan Journal, 2019, 50 : 1 - 11
  • [9] Some congruences on harmonic numbers and binomial sums
    Bing He
    [J]. Periodica Mathematica Hungarica, 2017, 74 : 67 - 72
  • [10] A NOTE ON THE CONGRUENCES WITH SUMS OF POWERS OF BINOMIAL COEFFICIENTS
    Shen, Zhongyan
    Cai, Tianxin
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2018, 58 (02) : 221 - 232