Congruences for certain binomial sums

被引:0
|
作者
Jung-Jo Lee
机构
[1] Yonsei University,
来源
关键词
central binomial coefficient; Legendre polynomial; 05A10; 11B65;
D O I
暂无
中图分类号
学科分类号
摘要
We exploit the properties of Legendre polynomials defined by the contour integral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{P}}_n}(z) = {(2{\rm{\pi i}})^{ - 1}}\oint {{{(1 - 2tz + {t^2})}^{ - 1/2}}{t^{ - n - 1}}{\rm{d}}t} $$\end{document}, where the contour encloses the origin and is traversed in the counterclockwise direction, to obtain congruences of certain sums of central binomial coefficients. More explicitly, by comparing various expressions of the values of Legendre polynomials, it can be proved that for any positive integer r, a prime p ⩾5 and n = rp2 − 1, we have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{k = 0}^{\left\lfloor {n/2} \right\rfloor } {(_k^{2k} ) \equiv 0,1} $$\end{document} or −1 (mod p2), depending on the value of r (mod 6).
引用
收藏
页码:65 / 71
页数:6
相关论文
共 50 条
  • [41] Bernoulli numbers, convolution sums and congruences of coefficients for certain generating functions
    Kim, Daeyeoul
    Kim, Aeran
    Sankaranarayanan, Ayyadurai
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [42] Bernoulli numbers, convolution sums and congruences of coefficients for certain generating functions
    Daeyeoul Kim
    Aeran Kim
    Ayyadurai Sankaranarayanan
    [J]. Journal of Inequalities and Applications, 2013
  • [43] ON CONGRUENCES FOR BINOMIAL COEFFICIENTS
    YEUNG, KM
    [J]. JOURNAL OF NUMBER THEORY, 1989, 33 (01) : 1 - 17
  • [44] Digit sums of binomial sums
    Knopfmacher, Arnold
    Luca, Florian
    [J]. JOURNAL OF NUMBER THEORY, 2012, 132 (02) : 324 - 331
  • [45] Factors of certain sums involving central q-binomial coefficients
    Guo, Victor J. W.
    Wang, Su-Dan
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [46] Factors of certain sums involving central q-binomial coefficients
    Victor J. W. Guo
    Su-Dan Wang
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [47] Congruences for sums of powers of Kloosterman sums
    Choi, H. Timothy
    Evans, Ronald
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (01) : 105 - 117
  • [48] Congruences for Brewer sums
    Alaca, Saban
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (01) : 1 - 19
  • [49] Congruences for Jacobi sums
    Evans, R
    [J]. JOURNAL OF NUMBER THEORY, 1998, 71 (01) : 109 - 120
  • [50] Congruences for harmonic sums
    Yang, Yining
    Yang, Peng
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2023, 29 (01) : 137 - 146