A NOTE ON THE CONGRUENCES WITH SUMS OF POWERS OF BINOMIAL COEFFICIENTS

被引:1
|
作者
Shen, Zhongyan [1 ]
Cai, Tianxin [2 ]
机构
[1] Zhejiang Int Studies Univ, Dept Math, Hangzhou 310023, Zhejiang, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
binomial coefficients; prime powers; congruences;
D O I
10.7169/facm/1694
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p >= 7 be a prime, l >= 0 be an integer and k, m be two positive integers, we obtain the following congruences, Sigma((l+1)p-1)(s=lp) ((kp-1)(s))(m) {((k-1)(l))(m) 2(km(p-1)) (mod p(3)), if 2 inverted iota m, ((k-1)(l))(m) ((kmp-2)(p-1)) (mod p(4)), if 2 vertical bar m; and Sigma((l+1)p-1)(s=lp) (-1)(s)((kp-1)(s))(m) {(-1)(l)((k-1)(l))(m) 2(km(p-1)) (mod p(3)), if 2 inverted iota m, (-1)(l)((k-1)(l))(m) ((kmp-2)(p-1)) (mod p(4)), if 2 vertical bar m. Let p and q are distinct odd primes and k be a positive integer, we have ((kpq-1)((pq-1)/2)) ((kp-1)((p-1)/2)) ((kq-1)((q-1)/2)) (mod pq).
引用
收藏
页码:221 / 232
页数:12
相关论文
共 50 条